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Abstract

For many years, the author has been creating mathematical sculpture in a variety of media. These include works constructed of metal, wood, plastic, paper, or consumer goods such as pencils, toothbrushes, or CDs. A range of computer-aided techniques is incorporated in the sculptural process, including laser-cutting, plasma-cutting, robotic paper cutting, and solid freeform fabrication. Aesthetically, these derive from classical ideas of balance and symmetry dating back to the Ancient Greeks. Examples can be seen at the web site www.georgehart.com. Each sculpture has a mathematical foundation underlying its form. An image based survey and classification of these sculptures is presented. A sketch is given of some algorithmic techniques and mathematical ideas involved.

0. INTRODUCTION
Since the time of the ancient Greeks, many people have appreciated the beauty of geometric symmetry. Euclid’s mathematical masterpiece, The Elements, culminates with the construction of the five Platonic solids. Without a doubt, ancient Greek scholars held models of these polyhedra in their hands and turned them slowly around to view their symmetry from all sides, just as modern-day students do when making paper models of these beautiful forms. I call this universal appreciation for three-dimensional symmetry the geometric aesthetic [5].
In my sculpture, I generate new forms based on classical ideals of balance and symmetry, but updated to modern materials, methods, and high-tech sensibilities. Each piece begins with a pure form which I first visualize. Then I choose materials appropriate for realizing the form physically. In one series of pieces, familiar objects such as pencils or CDs are arranged in novel configurations, displaying an essential tension between mundane individual components and an original totality. In a second series of pieces, I create abstract components which have the appropriate lengths and angles to be assembled together into geometric sculpture. Often computer-controlled techniques such as laser-cutting are used to fabricate the individual components, which I then painstakingly assemble. In a third series of pieces, robotic assembly techniques are used to construct by layered fabrication the entire sculpture, which is too intricate and complex for me to build without machine assistance. 
This paper illustrates and describes a dozen sculptures—old and new—from these three categories. Many additional examples can be found in the references [1-13].
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Figure 1.1 72 Pencils
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Figure 1.2  Rainbow Bits

1. FOUND OBJECTS
The three examples in this section are assembled from ordinary household objects: pencils, CDs, or tooth brushes. In other examples, not shown, I have used components such as floppy disks, forks, knives, and spoons, etc. For sculpture of this category, the viewer is repeatedly reminded of the sculpture later when seeing isolated instances of the component at home. 

1.1  72 Pencils

72 Pencils is a geometric construction of 72 pencils, assembled into a work of art.  Restricted to a limited edition of twenty-five examples, each shares a common form, yet each is unique.  The form is an arrangement of four intersecting hexagonal tubes that penetrate each other in a tetrahedral three-dimensional lattice.  Each of the twenty-five sculptures in the limited edition is constructed with a different type of pencil, so each is a one-of-a-kind object. 

For mathematically inclined viewers, part of the interest lies in understanding the form of the interior.  The four hexagonal tubes are hollow, so the sculpture as a whole is hollow.  But, what shape is its cavity? What shape room would a mouse on the inside experience?  To the math​ematician, the answer is "the rhombic dodecahedron," an important geometric solid bounded by twelve rhombuses.  It appears in many scientific contexts, such as crystallography and coding theory. 
1.2  Rainbow Bits

Rainbow Bits is a sphere of 642 CDROMs, 2 m in diameter, commissioned by Carlo Sequin for the Computer Science building, Soda Hall, at the University of California at Berkeley. The form is based on a polyhedron I discovered and named the propello-icosahedron [1]. Derived from the ancient icosahedron, it consists of 20 equilateral triangles and alos 60 tri-equiangular kites. The sculpture consists of one CD for each vertex and a chain of three or five CDs for each edge. I cut slots in the CDs in my studio in New York, then shipped them to Berkeley so they could be quickly assembled and glued on site.

The sculpture is suspended from a chain which allows it to rotate slowly with the air currents, and the visual effect constantly changes with the lights, viewer, and sculpture position. Special holographic CDs were used, which create intense colors. The atrium has four sets of spotlights which are controlled by dimmers adjacent to the sculpture.  Anyone can adjust them to produce a variety of effects. 
1.3  Just Two Cavities  

This 50 cm sculpture consists of a cavity inside another cavity. It is a hollow 120-toothbrush sphere with a hollow 60-toothbrush sphere within it.  There are 30 in each of the six colors, making up the 180 toothbrushes in total.  The two concentric spheres are suspended so they can rotate independently, making for a light and open feeling.  At just the right relative position, the colors and symmetry axes of the two balls line up and one can see that each is the geometric dual of the other. This implies that the edges of one are respectively at right angles to the edges of the other. This is possible because one (the outer) sphere is based on the rhombic triacontahedron and the other (inner) sphere is based on its dual, the icosidodecahedron. 
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Figure 1.3 Just Two Cavities
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Figure 2.1  Eights

I had to create a jig to hold the components together in the proper relative orientation while the glue dried. The jig was later disassembled and its parts removed through the larger openings. This sculpture was commissioned by Dr. Donald Kahn, D.D.S. for his dental office waiting room in Farmingdale, NY.
2. ABSTRACT FORMS
The six sculptures in this section are assembled from small individual components. In the first five of these, I created the components using a computer-controlled cutting device. In the last example, thousands of pieces of a commercial educational construction toy were used as the components. 
2.1  Eights
This 15 cm diameter paper sculpture is made of sixty identically shaped parts. Parts of any one color form a type of tetrahedron, and there are five such tetrahedra, deeply interlocked. Using small tweezers, it took me about four hours to assemble after several hours of false starts and figuring out how to do it. No glue was used originally; the parts simply hook into each other. However, I later added some very small dots of glue to lock the parts together before shipment to an art exhibit, as I was worried that it might spontaneously disassemble from vibration during transport. 
I call this type of all-paper design "modular kirigami," from the Japanese term for cutting paper and because identical modules are used [10]. To cut the parts to the exact shape required, I used a robotic paper-cutting device. This type of machine inputs a line drawing and manipulates a knife to cut along the lines. For making many identical parts, it eliminates an enormous amount of tedious work compared to hand-cutting the paper. Such machines were previously available only in expensive commercial versions, but recently have been produced with low-cost consumers in mind. So I expect an explosion of paper designs for mass consumption to appear soon.
2.2  Cagework I

Cagework I is an 18 cm diameter one-of-a-kind acrylic sculpture assembled from thirty identical components. Each part is a kind of S-shape made of acrylic plastic (“Plexiglas”).  They form an intricately interwoven cage with a graceful lightness. It is tricky to capture in a photograph because the partially transparent parts produce many internal reflections and refractions.  There are twelve places where five parts come together to form a sort of orifice that frames an opening into the interior. 
This is one of a series of acrylic sculptures I have made based on extending the face planes of a polyhedron into a stellation, then choosing subsets of the stellation planes [9]. Laser cutting is used to produce the raw individual components. I then bevel the edges to the proper dihedral angles for them to butt together. After weaving them into the proper configuration, they are positioned in a jig and glued with solvent cement. So far there is no Cagework II, but I expect to create a series of related forms in the future.
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Figure 2.2 Cagework I
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Figure 2.3  Salamanders

2.3  Salamanders
Salamanders is a thirty-piece wooden sculpture 0.75 m in diameter. It was assembled by a group of thirty volunteers in a sculpture "barn raising" event when I was artist-in-residence at the Massachusetts Institute of Technology in October/November 2003. (I call these events “barn raisings” after the traditional New England events in which a community assembles the framework of a barn.) This one is composed of laser-cut salamander-shaped components which lie in the planes of a rhombic triacontahedron. They are mathematically designed to weave through each other and exactly fit together on the outside. The Baltic birch plywood parts are screwed together by means of wooden connectors behind the heads and feet. The sculpture is the first in the art collection of the MIT Computer Science and Artificial Intelligence Laboratory, on display in the Stata Center at MIT.
2.4  Spaghetti Code

This two-meter diameter metal sculpture was assembled by a group of two hundred students, faculty, and staff at Stony Brook University in 2004. Its 180 laser-cut aluminum components were intricately woven through each other and locked together with 300 stainless steel pins. Although it may at first give the impression of a random spaghetti tangle, the form is highly structured mathematically. There are three shapes of parts (60 of each shape) and they are patterned with icosahedral symmetry (just the icosahedral rotations—not the reflections). 
The most surprising aspect of the design is that wherever two pieces join, they meet at a 90 degree angle. This allows a very simple pinned mortise and tenon connection mechanism using cotter pins. After months of design and preparation, including the construction of a half-scale wooden version, less than two hours were required for the actual group assembly. It is now on permanent display, suspended in the lobby of the Stony Brook University Computer Science building.
2.5  12-Part Sculpture Puzzle
This is one of a series of metal “sculpture puzzles” that I have designed [8]. Each consists of a set of identical parts that snap together into a symmetric form. These intricate objects are designed to simultaneously be challenging assembly puzzles and attractive artworks. The parts are flat, so they can be cut out or stamped from sheet materials such as wood, metal, plastic, or cardboard. No connectors, welding, or other attachment device is used. Indents in the outline of each part are positioned to mate with other parts and snap together. So they can be disassembled and reassembled repeatedly. High accuracy is required for the parts to connect properly, so I used a computer-controlled plasma cutter to cut the stainless steel for this example. Others have been made with computer-controlled laser cutting. Because of the intricate weaving of the rigid arms that is required, these are very difficult puzzles.
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Figure 2.4 Spaghetti Code


[image: image8.png]



Figure 2.5  12-Part Sculpture Puzzle

2.6  Zometool Polytope Projection
This sculpture is a colorful mathematical model representing a three-dimensional projection of a four-dimensional polytope [11]. Polytopes are the higher-dimensional generalizations of two-dimensional polygons and three-dimensional polyhedra. So this form goes way beyond what the ancient Greeks knew, but there s no doubt that it appeals to the same geometric aesthetic. It is about 2 m in diameter, constructed from ten thousand eight hundred individual components by dozens of volunteers working with me over a four hour period. The material used is a plastic building set called Zometool. While many polytope models can be made, fifteen relatives of the 120-cell are very natural for the material and I have been organizing a series of workshops constructing them all.
3. SOLID FREEFORM FABRICATION
The three sculptures in this section are fabricated robotically from my computer-generated specifications. “Solid Freeform Fabrication” (SFF) refers to a family of technologies for constructing physical objects by stacking thin layers. I write software to generate data that describes the geometric form. Then the mathematical intersection of this form with a series of horizontal planes is calculated.  Each intersection is a cross-section of the sculpture, which is printed in a thin material on top of the lower cross-sections. After hours of layering these cross sections, the final form is complete. A number of SFF technoloogies are available from different manufacturers, which work at different accuracies with different materials. The examples shown here are all made from nylon on a DTM machine.
3.1  Mermaid’s Delight
This 10 cm diameter sculpture is meant to give a sense of organic structure and mathematical regularity. I imagine it as something which could plausibly be found under the sea. Twelve star-like outer portions smoothly morph into thirty inner labial organs. The surfaces are all spherical because it results from applying central inversion to an underlying polyhedral form with planar facets. I colored the originally white nylon to be yellow on the exterior and pink inside, using watercolor techniques to produce a smooth gradient of tone.
3.2  Echinodermania (spiral toroid)
This is another SFF form which is meant to suggest itself as a possible undersea organic form. There are five twists around a toroidal core, with a pattern of openings that gets finer and finer towards the periphery. It is based on a the {5,4,5,4} hyperbolic tessellation in the Poincaré plane, which has been transformed into a smooth three-dimensional toroidal network [12]. This involves a generalization from Euclidean geometry to non-Euclidean geometry, but it still resonates strongly with the geometric aesthetic that the ancient Greeks would appreciate. Again, I have hand dyed the sculpture to produce a smooth color gradient, to enhance its organic sense. The geometry description file which specifies this form is available on my web site [13] so the sculpture can be replicated by anyone with access to a SFF machine.
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Figure 2.6 Zometool Polytope Projection
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Figure 3.1  Mermaid’s Delight

3.3  Echinodermania (dodecahedral)
The final example of this paper is another hypothetical undersea form. In this case, the general form of the sculpture is straight out of Euclid, a regular dodecahedron. But the pattern of struts that lie on this dodecahedral scaffold again derives from a non-Euclidean hyperbolic tessellation. Math​ematically, the pattern of holes could be continued to be finer and finer towards the periphery of the form, but the resolution limits of the SFF machine make me select an arbitrary stopping point. 
4. CONCLUSIONS
A dozen mathematical sculptures have been presented, illustrating how the geometric aesthetic of the ancient Greeks is still alive in our modern times. New materials and technologies offer the opportunity to create original sculptures that celebrate eternal mathematical truths. Each artwork is based on underlying mathematical ideas that lead the viewer to study the work, seeking structural patterns and internal relationships. 
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Figure 3.2 Echinodermania (spiral toroid)
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Figure 3.3  Echinodermania (dodecahedral)
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