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ABSTRACT

A method has been developed for carrying out residential
load research in a nonintrusive and inexpensive manner. A
Nonintrusive Appliance Load Monitor can be installed in the
kilowatt—hour meter socket of a residence; it requires no entry
or wiring in the house. The microprocessor-based unit analyzes
the detailed power flow characteristics of the circuit to
identify the nature of the major appliances operating within. It
is able to determine what portion of the total energy is consumed
by each of the major appliances on the circuit.

This report describes the makeup and operation of this Load
Monitor, emphasizing the algorithms which are used to perform the
load analysis, It also reports on the success of three field
trials of a prototype Load Monitor, and the directions that
current research is taking to expand the applicability of the
method.
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1.0 INTRODUCTION

In this report we describe the makeup of a new Nonintrusive
Appliance Load Monitor. This is a microprocessor-based device which
has been de#eloped by MIT as a low cost and easy-to-use method for
utilities to carry out residential appliance load research. In con-
trast to existing load research equipment, which requires entry into a
residence to connect sensors to individual appliances and branch
circuits, this new method requires only a single external connection
at the kilowatt hour meter or on a utility pole. From this external
location, the load monitor carefully measures characteristics of the
total residential load and uses sophisticated algorithms to determine
what portion of the total load can be allotted to each separate
appliance inside the residence. In the course of this operation, it
first determines the number of major appliances in the residence, and-
the electrical nature of each one. It should be emphasized that this
process 1is carried out in a completely automatic and unassisted
manner, without the need for any appliance survey- or contact with the
occupants.

There are two main limitations of the device. The first is that
its performance degrades as one considers smaller and smaller appli-
ances. The greater the power consumed by an appliance, the easier it
is to recognize its presence in the aggregate load. In the residen-
tial settings in which it has been tested, it appears that the thres-
hold of useful operation occurs between 100 and 200 watts. Only
appliances which consume more power than this can be accurately detec—

ted and reported on., Mest of the appliances of interest to load



researchers fortunately fall in this range. Lighting appears to be
the single major exception.

The second limitation is that the Load Monitor, at its current
state of development, is only capable of learning and reporting on a
somewhat restricted class of appliances. This is the class that we

[
call two-state appliances. This refers to appliances which at all

times can be completely described as being either ON or OFF. The
majority of consumer appliances fall into this class., A second
version of the algorithm is under development which is more complex,

but capable of operating on the wider class of multi-state appliances,

which includes not only the two-state appliances, but also appliances
which have more than one type of ON state. This includes appliances
such as dishwashers and washing machines which have "wash," "rinse,"
and "spin" or "dry" states, and fans or air conditioners with "low,"
"medium” and "high" settings.

Given these two limitations, we recommend that use of the load
monitor be targeted towards certain appliances. FElectric water
heaters and refrigerators, for example, are excellent targets for the
monitor. Central air conditioning should be a good target except in
the case of heat-pump air conditioners with complex controllers, which
are multi-state appliances. The two-state version of the monitor has
been. operated and tested with successful results which are reported
below. When faced with multi-state appliances, the two-state load
monitor either ignores them or learns their separate components (e.g.
motors and heating elements) as unrelated appliances. The multi-state
version is still under development. As it is improved, we believe

that the class of appliance targets will be widened.



‘The key to the load monitor lies in the method by which the the
total load is analyzeé. The bulk of this report describes the details
of the method. Real and reactive power measurements are taken at a
rate of once or more per- second, and examined for increases and
decreases which indicate that jndividual appliances are being turned
on or off. The sizes of these increases and decreases are then
analyzed statistically to determine which should be associated with
the same appliance, and which belong to different appliances, thus
giving the number of appliances. {Small changes in power, helow a
cut-off threshold of approximately 100 W, are ignored,) The times at
which they occur are used to determine the energy consumption versus
time-of-day characteristics of each of the appliances. This infor-
mation is then used to identify the nature of each appliance. Power
consumption versus time—of-day information is then output at monthly
intervals for the use of load researchers.

A prototype load~ monitor has been developed using 2a general
purpose microcomputer and a power-sensing peripheral. This prototype
has been tested for two weeks in three homes. In all three cases, the
load monitor succesfully learned the electrical characteristics of all
the major two-state appliances which operated during the test period.
It was able to track their energy consumption with an accuracy between
75 and 90%. ~Based on these results we are continuing to refine the
load monitor in ways which will improve its operation. Ve are confi-
dent that the next generation prototype Load Monitor can achieve an
accuracy of approximately 95%.

Sections 2 and 3 of this report describe the two-state algorithm.
In Section 2, the essentials of the algorithm necessary to any imple-

mentation are discussed in general. In Section 3 we describe the

-



details of a particular program we have written which realizes this
algorithm. This program forms the heart of the prototype load monitor
which has been successfully field-tested in three residences under
conditions which mimic that of nonintrusive monitoring. The results
of these tests are included in Section 3 and Appendix " E. A second
version of the algorithm, suitable for multi-state appliances, is
adumbrated in Section 4, This is a report of ongoing research. The
details of the multi-state algorithm have not been specified, and it
has not been tested.

In Section 5, the hardware of the nonintrusive appliance 1load
monitor is discussed from two points of view: its computational
requirements, and the details of its mounting and installation.
Section 6 describes the work which is yet to belcompleted before the
load monitor can be brought forth as a commercial product. This
includes developing the multi-state algorithm further, improving its
ability to identify appliances by common name, and additional testing,

Before continuing with the technical details of the load monitor,
an ethical question must be considered: does the nonintrusive nature
of the monitor result in an invasion of privacy to the occupants? An
analogy might be made between the manner in which the monitor works
and that of tapping a telephone line. To emphasize the problem,
consider that the method described herein is capable of detecting and
reporting highly detailed information concerning the activities taking
place within the house. ~ For example, in two of the field tests
described below, the prototype monitor could correctly report all the
details of the bathroom light usage, printing out exactly when and for

how long (to the second) it was turned on. It does this using only

1
1
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information extracted from measurements that could be taken outside
the house, at the uti}ity pole.

Despite the potential for abuse of the method, we feel there is
no real moral problem with the load monitor when we consider how and
why it is used. It has been developed for load researchers who are
interested in the energy usage characteristics of classes of
appliances. For the purposes of planning future generation capacity
or transmission and distribution requirements, utility planners are
looking for load models which can be built' up from individual
appliance load models.. Public policy makers require data on the
energy consumption of appliance classes in order to rationally make
decisions affecting the sale of appliances. Utility rate setters also
need information concerning typical energy consumption of appliance
classes in order to assess the worth to the utilities, and economic
consequences, of different metering schemes such as time—of-day
metering, demand metering, and water—ﬁeater discounts.

Thus there appears to be no legitimate use for the detailed
information concerning when each appliance turns on and off. The Load
Monitor is therefore programmed not to store or report the detailed
information. Only average energy usage over a monthly period for each
appliance is kept. The utility, which might have hundreds of Load
Monitors in place, then averages this information with data from other
houses. In summary, extremely detailed load information does pass
through the load monitor--this is essential to the method--but it is
processed so that only average information is available from the
results, and individuals are not identified.

We should also note in passing that there may be legitimate uses

for the detailed switching information in applications of the method
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which are not directly related to this project. For example, a load
controller could - be designed to operate a deferrable load as a
function of the on/off state of other, nondeferrable, 1loads. The
nonintrusive technique may be suitable for sensing the state of the
nondeferrable loads from a single central sensor, at a lower cost than
individual sensors. A second application would be to provide detailed
usage information for the homeowner for his/her own purposes. It
could be a useful tool for determining exactly where and when energy
is used, or for locating appliance failures. In this latter capacity,
the load monitor has been used to determine that one of two under—
ground septic pumps at the Acton House (described in Section 3.2.3)
has failed. When the operating pump is manually switched, the power
consumption of the house increases by an amount compatible with the
manufacturer's description of the motors. However, the power con-
sumption of the house increases only minimally when the other pump is
switched on manually,

Although this report is designed to be self-contained, it may be
helpful to be familiar with progress report [1]. The earlier report
contains background material that explains why various options were

selected here.



2.0 TWO STATE ALGORITHM

The two-state algorithm is the method by which the nonintrusive
load monitor can learn and report on the nature of .the two-state
appliancés in a residence. As defined above, these are the appliances
which have only one electrically significant mode of being turned on.
They do not have multiple speeds or contain independently switchable
elements. The algorithm described below has been designed to learn
only the two-state appliances in a residence. When faced with multi-
state appliances it is designed to either ignore them altogether, or
to learn their separate components as jindividual two-state appliances.
Thus, the algorithm will learn the separate heating elements of an
oven or stove as distinct electrical appliances, without realizing
that they belong to the same physical assemblage.

There are two different points of view which can be taken when
describing the algorithm. Suppose that one wanted to collect a year
of load data from a residence. From the first point of view, we
imagine that detailed power measuremehts for the residence for the
entire year have been collected and stored in some form, and we now
wish to process them. Civen this large mass of data, one can in
principle describe what operations to carry out in order to arrive at
the final results. The calculations can be designed to optimize
various parameters (e.g. minimize the error) over the entire year.
Although storing and processing & year's worth of detailed data may
pose technical problems, it is certainly possible in principle. From
the second point of view, we consider the constraints imposed by the
finite computing resources available in a small microprocessor-based

load monitor. Even if the memory facilities permitted it, we do not



wish to store a complete year of data and then begin to analyze it.
Instead, we wish, at each point in time to have analyzed all the data
collected up to that point to the maximum extent possible.

The first point of view is a static optimization problem. We are
given the data and we ask what is the most likely analysis of it in
terms of a set of appliances which would explain the observations,
The second point of view gives rise to a dynamic optimization problem.
At each point in time we try to formulate the most likely analysis of
the data collected up to that point, but we do not keep all of that
data around. Instead, we keep only the minimal amount of data—a set
of sufficient statistics—-with which to solve the problem. As new
measurements are recorded, they are not stdred, but instead are used
to update the statistics to arrive at an improved estimate of the most
likely set of appliances given the earlier and new data. In this way,
a finite machine with a small amount of memory can continue to operate
for an indefinite time period; the first method would eventually lead
to a shortage of memory capacity.

In this section we describe the two-state load monitor from the
static point of view. This also provides a basic introduction for a
later discussion of the dynamic algorithm. Those aspects of the
algorithm are postponed until Section 3. In addition, the static
problem gives a broader presentation because it is compatible with
many different dynamic versions, of which only one is described in
this report.

The overall algorithm can be broken up into eight steps, which
are described in the following sections. The steps are:

(1) Measurement

(2) Normalization
(3) Edge Detection

-8~



(4) Clustering

(5) ON/OFF Matching

(6) Separating Simultaneous Changes

(7) Transfer to Central Facility

(8) Identification
Fach of these steps might be performed in several alternative manners.
The most suitable manner is described first, followed by options which
may be appropriate in certain circumstances. (The progress report [l1]
contains additional alternatives.)
2.1 Measurement

The power and voltage of the residence are measured once per

second. By "power" we are referring to four independent quantities to
be measured every second: the real and reactive power consumption on

each of the two out-of-phase legs entering the residence., These four

measurements are grouped into a power vector. The RMS voltage om cach

of the two legs is also measured every second.

If the residence does not have two separate "legs" at its service
entrance, the method simply scales to the number of independent
circuits available. The voltage, real power and reactive power of each
separaté circuit (referenced to ground) is measured. These measure-
ments can be combined into a vector which contains the real and
reactive power of each of the separately measured circuits as its
elements.

Alternative embodiments of the device could measure only the real
part of the power or only the reactive part of the power. This would
simplify the device at the cost of reducing its discriminating power,
but might be appropriate for some class of target appliances. If it
is necessary to increase its discriminating power, other measurements
from the following list might be used in addition to, or in place of,

the power measurements, but this has not been tested:

-9~



Power, current or admittance at the 3rd or 5th Harmonic

Power, current or admittance of sub-harmonics

DC bias current

The exact rate at which sampling occurs is not critical to the
method.. A slower rate can be used if it is all that the apparatus
allows, but this leads to more frequent errors by the device. A
slightly higher rate may be preferable, but there is no advantage in
exceeding approximately ten measurements per second. The measurements
need not be at regular intervals; if, for example, computational
requirements necessitated the skipping of occasional ‘samples, the
overall accuracy would not be significantly affected.

2.2 Normalization

In the current embodiment of the device, the two circuit voltages
are also measured every second. From this data, the real and reactive
parts of the power are adjusted every second to correct for the fact
that the utility allows the line voltage to vary, using the following

formula:

120 2
Adjusted Power = Measured Power * ( ————-r )
Voltage
When applying this formula, each component, real or reactive, of each
sample is adjusted using the corresponding voltage for that lég (or
circuit) at that second.

This normalizes the power to what it would have been if the
utility voltage were the nominal 120 volts. By doing this we arrive
at more consistent changes in power for each appliance when we perform
the edge detection procedure below. It also eliminates changes in

power which are caused only by changes in line voltage.

Variations of this procedure which could be used with similar

-10-



effect are to:

(A) Choose a different normalizing voltage instead of 120 in
the numerator of the fraction; or

(B) Choose an exponent other than 2.

Note that if 1 is used as the normalizing voltage, the normalized
power becomes equivalent to admittance. The use of 2 as the exponent
is a consequence of assuming the power varies as the square of the
voltage. This is not exactly the case for most applignces. Exponents
other than 2 are considered in Appendix B. It is shown there that it
may be preferable to normalize the real part of the power using an
exponent of approximately 1.5 and the reactive part with an exponent
of approximately 2.5.

2.3 Edge Detection

The third step of the method is to look for changes in power with
the following two-step procedure, which is illustrated in Figure 2-1
for hypothetical power measurements:

(A) Divide the sequence of power measurements into time periods
in which the power is steady and time periods in which it is changing.
A steady period is defined to be one of a certain minimum length in
which the load does not vary more than a specified tolerance. The
remaining periods, in between the steady periods, are defined to be
the periods of change. The current embodiment of the device uses two
seconds as the minimum length and 15 watts or VARs as the allowable
tolerance in the definition of a steady period, but other values of
these parameters could be used with a similar effect.

Note that a time period is defined to be steady if and only if
all the measured quantities in the measurement vector remain steady.

If any of the components are changing, the period is "changing."

-11-



(B) For each time period in which the power is changing, compute
the total change in power across the period by subtracting the steady
power level before the change begins from the steady power level after
the change ends. The current method reduces the effect of noise by
averaging all of the measurements {of each vector component) during
each steady period to arrive at noise-reduced steady values. The
change, or transition, for each period of change is therefore a four-
component vector computed by subtracting the average of all the
measurement vectors 1v the previous steady period from the average of
the measurement vector: in the subsequent steédy period.

Note that this description is appropriate only if it is possible
to store a long stream of four-component measurements at one-second
intervals. In a small Load Monitor this would be quite impractical.
The prototype Load Monitor therefore uses an algorithm for edge
detection which is a dynamic version of the above static description.
It produces the identical effect by means of a small number of suffi-
cient statistics, without the need for storing a long stream of

measurements. Section 3.1.2 describes this dynamic edge detection.

g . = Measurement
—
= $= Transition
o7 ® ®
w 2”4 ®= > Threshold
e
K Dl mtuln
Stéady ~ *  Steady  *  Steady * = Changing
TIME

Fig. 2-1. FEdge Detection,
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2.4 (Clustering

The observed changes are then grouped into "clusters." A cluster
of changes is simply a set of changes all of which are approximately
the same (in all components), For example in Figure 2-2 we show a
hypothetical one-dimensional example in which many changes have bheen
observered which can be grouped into four clusters. Each change is

approximately 200, 500, -200 or -500 W,

2 o de Mo g

608 -500 408 -308 -200 -iB@ @ 188 200 2300 428 383 689

Fig. 2-2, Example of Clusters.

The purpose of the cluster analysis is to allow for a certain
variation in the measured change each time an appliance is switched on
or off. The data in Figure 2-2 is what one would expect to observe if
there were a 200 W appliance and a 500 W appliance in the residence.
Each - time the 200 W appliance turns on, the total power consumed by
the home increases by approximately 200 W, but not necessarily exactly
200 W. Due to variations in the conditions when the appliance is
turned on, and measurement noise in the sensors and A/D converter, the
observed_increase in power will not be exactly 200 W, Similarly, the
cluster of changes of approximately 500 W results from the times when
the 500 W appliance turns on. The clusters of changes with negative
power levels result from the turning off of the appliances.

- Actual' data from a residence will be more complex than the above
example indicates. There are likely to be several dozen clusters,

because there are typically dozens of appliances in a residence.
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There is more information available however, than in this one-
dimensional example. The independent components of the transition
vectors allow clustering to be performed in a higher number of
dimensions. For example, four-dimensional clustering can be carried
out to separate appliances which draw the same real and reactive
power, but are on opposite legs.

Many statistipal techniques of cluster analysis are well-known
and could be used for this purpose {(in the static formulation). For
example, References [2] and [3] each list dozens of cluster analysis
techniques. The clustering technique used in the prototype load
monitor has several new features which allow it to function recur-

sively in the dynamic implementation. It is described in Section

3.1.4,

2.5 ON/OFF Matching

Next, the observed changes from the ON and OFF clusters of each
appliance are grouped together into pairs according to their time
coordinates, Each ON/OFF pair corresponds to a. single cycle of
appliance usage. For example if there is a change of approximately
200 W at 6:00 and a change of approximately negative 200 W at 9:00
(with no other changes from either of those clusters in the interim),
they are grouped together into one appliance cycle. From this we
compute that the 200 W appliance was on for the three hours, and
consumed 600 watt-hours of energy. Changes which do not fit into an
ON/OFF alternation are ignored unless they can be handled by the
method of the following section. 4 detailed account of the method by
which the prototype load monitor pairs ON and OFF transitions is given

in Section 3.1.3.
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2.6 Separating Simultaneous Changes

From time to time, two appliances are turned on or off (or one on
and one off) simultaneously, or in rapid succession so that the second
appliance is switched before the transient of the first has ended.
When this occurs, the change computed by the method of Section 2.3
above will be the sum of the changes that would have been observed if
the two appliances were switched at different times. For example, if
the 200 W and 500 W appliance are turned on nearly simultaneously, a
700 W increase in total power consumption of the house is observed.
This 700 W change is easily interpreted by the facts that:

(A) It rarely happens. (e.g. The cluster of 700 W changes is
very small; perhaps containing only one example.)

(B) It occurs, in time, between two ON or two OFF transitions of
some appliances, which could not both be paired by the matching proce-
dure above (e.g. The 700 W change occurs between two -200 W changes in
a row—-a +200 W change is missing--and between two -500 W changes—a
+500 W change is missing.)

(C) The observed change is approximately the sum of the two
missing changes (e.g. 700=+200+500).

When all three of these conditions occur, the unusual observed
transition is "broken apart" into its two simultaneous components, and
the procedure continues as if the two components were available for
matching ON's and OFF's as above. Thus the load monitor "understands"
that the 700 W change was really two independent appliance transitions
which happened to occur at the same moment.

Note that the prototype Load Monitor, as it stands, does not
decompose simultaneous transitions. Time has not permitted incorpora-
ting the algorithm into the current software, The above technique
was developed and tested .in the "Recognition Program" described in
Reference [1]. We expect that it will also work when implemented

here. The next generation prototype Load Monitor, described -in
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Section 6.2 will incorporate thig technique.

2.7 Transfer to Central Facility

The final step of the method that is performed by the micro-
processor unit ig tg output the characteristics of the observed
appliances. This includes g description of the clusters in the signa-
ture space and pParameters specifying their electric pover usage such
as their total eénergy consumption. - Many such parameters could be
selected, In all probability, load researchers .would prefer energy to
be broken up by hour of the day on weekdays and weekends. (Thus there
will be 48 numerical energy values per appliance each month.)  Other
temporal divisions are, of course, easily arranged if they are of
interest to the end users ‘of the data. We expect output to occur at
approximately monthly intervals, The energy for any appliance during
any given hour is 8imply the sum oflthe energy consumed in each of the
observed cycles (as calculated in Section 2.5 above) which happened to
occur during the épecified clock hour, Time-of-day usage plots of
this form, which demonstrate the type of results the load monitor is
capable of, are given in Section 3.2 and Appendix E,

Another parameter which energy consumption can be correlated

with is temperature., We expect the load monitor will contain a tem-

-Perature sensor sc that the sensitivity of the appliance to tempera-

ture can bg tabulated. (A temperature-humidity index may be even mozre
suitable.) This information should be very useful for identification
purposes. For example it should enablé space heaters to be clearly
distinguished from other large resistive loads. It will also be
important for lead researchers reconstructing space conditioning lcads
as a function of weather models. We are not sure at this point what

form of energy-temperature data is most useful for this 1latter
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purpose, so we will not propose any particular format here.

The actual data transfer could be performed by telephone link
directly to a central computer, or by transfer to am intermediate
storage device which is carried from house to house by a meter reader.
Various hardware options for data transfer and temperature measurement
are considered in Section 5.2.

2.8 ldentification
Each ON/OFF pair of clusters (a positive and negative cluster of
the same magnitude) represents a.separate two-state appliance or
appliance component (for example the heater and motor components of a
dishwasher may be observed as two separate ON/OFF clusters). The
algorithm must examine the properties of the clusters and try to
identify the appliance class of each (e.g. "refrigerator," "heater of
dishwasher," etc.). To do this, a table of appliance classes and
thelr properties will be provided. The algorithm will check each
luster against the classes in the table to see which item in the table
1s closest to each observed cluster pair. The proper:ies used will
include real and reactive components of the turn-on transitions. For
example, refrigerators as a class are expected to exhibit a change of
100-300 W and 100-500 VAR on only a single phase when they turn on,
‘”whlle electric water heaters are expected to be approximately 4000 W
- balanced on two Phases. Weather related correlation factors can also

be included, As mentioned above, space heating can be identified by
.ithe fact that it on more frequently when it is cold outside. Air
conditloners should be identifiable by their positive correlation with

temparature.

The table will also contain timing information, such as the
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average length of time per ON/OFF cycle of the appliance and the
number of .cycles per day. Expected time-of-day and time-of-year
properties can also be used (e.g. lights are used more often at night,
electric lawn mowers are used more often in the day and in the
summer } . We do not wish to rely tco heavily on temporal expectations
however, as this could cause the load monitor to fulfill its own
prophesies, and only find results which are predictable. For example,
if the table erronecusly claimed that lights are only used in the
evening, and somecne ran lighting all day, there would be a danger
that the load monitor would misidentify the lights and call them by
some other name.

It is important to stress that the identification portion of the
methed has not yet been developed., We see no major obstacles in doing

so however. It is discussed further in Section 6,1,
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3.0 REAL TIME IMPLEMENTATION
This section describes the current status of the prototype load
monitor. The hardware consists of a Hewlett Packard 9845PB desktop
scientific computer and a Digital AC Monitor [4) as a sensor instry-
ment, as shown in Figure 3-1. The HP9845B computer runs a program
which incorporates a dynamic version of the two-state algorithm. This
program consists of approximately 1500 lines of interpreted BASIC code
requiring approximately 64 K bytes of memory. Built-in tape drives
and printer are used as output devices for the load data. The Digital
TAC Monitor is 8 programmable microprocessor-based sensor device which
can measure voltage, and real and reactive power on up to eight AC
circuits simultaneously. It transmits these measurerents to the HP

computer over an R5-232 link at one-second intervals.

- SERVICE MAIN SENSORS

JENTRANCE sC
OF HOUSE Im'

)

DISTRIBUTION
PANEL
)
. DIGITAL
AC
MON ITOR
RS-232
HP 9045 8
DEKTOP
COMPUTER

Fig. 3-1. Prototype Load Monitor.
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Sectior 3.1 below describes the architecture of the BASIC program
which forms the "brains" of the load menitor. Section 3.2 describes
the results of testing the load monitor on three residences. In
Section 3.3 we list the improvements to the load monitor which we
would like to make in the near future, based on the testing to date.

3.1 Program Structure

Most of our research effort over the past year has gone into
designing, implementing, and testing the software which controls the
load monitor, The program executes what was termed the dynamic two-—
state algorithm in Section 2. It therefore contains capabilities
which allow it to run continuously in real time, which were not dis-
cussed above. Some of these complications consist merely of buffering
techniques which allow the processor to be focused on certain
computation-intensive aspects of the problem while interrupt-based
processes continue to collect and analyze measurements from the
sensors at regular one-second intervals, These data-flow aspects of
the program are described in Section 3.1.1 below. Section 3.1,2
details the manner in which transition-detection is performed by the
load monitor. The static description given above in Section 2.3 is
adapted so that it does not require storage and subsequent processing'
of a potentially unbounded set of measurements. The technique chosen
to match ON and OFF transitions is explained in Section 3.1.3. Again,f
& method was selected which allows a finite memory to be used for
pairing transitions over a potentially unbounded time pericd.
Additional complications arise from the need to perform _ciuste; 1
analysis in a dynamic and open-ended manner. These problems have ©
necessitated the development of a new cluster analysis technique which i

is described in Section 3.1.4.

~920-



3.1.1 Architecture and Data Flows

Flow of control and data in the load monitor is shown in Figure
3-2. The géneral flow of information proceeds from left to right
across the center of the diagram., Measurements from the Digital AC
Monitor are processed at one-second intervals, and normalized to 120 V
as described in Sections 2,1 and 2.2. Real and reactive power on each
of the two legs form a four-component measurement vector. An edge
detection algorithm is called every second with the ‘rew measurement
and seeks to locate and quantify step changes in the measurements over
time. The edge detection algorithm results in 8tep transitions as
described in Section 2.3 above, but this is achieved in a slightly
.more complex manner. A dynamic edge detection method, described below
in Section 3.1.2, allows for edges to be found without storing long
streams of measurements.

-These three parts of the algoriﬁhm, measurement, normalization
and edge detection, are performed as an interrupt process. The
Digital AC Monitor is programmed to transmit measurements at one-
second intervals. When they are received by the HP9845B computer, the

‘Tprncessing subroutines are triggered. Generally, no edge is detected,
énd these subroutines return control to the background process for the
rémalnder of the second until the next measurement arrives. If an

edge is detected, then it is converted to a two-and-one-half-

ﬂiﬂg&g&gggl format and buffered in the pre-buffer before the sub-

rogtines relinquish control;
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The pre-buffer is a circular format buffer which stores transi_
tiens until the background process has time 1o analyze them. The
format in which they are stored and later processed is called "two-
and-one-halfdimensional™ because the four-dimensional measurement
vector is compressed to a format with fewer degrees of freedom. The
assumption is made that all loads are either 120 V appliances or
balanced 240 V appliances. Then the tramsition observed when an
appliance turns on can he expressed as a two-dimensional quantity, the
real and reactive power it draws, along with a quantity which takes on
one of three discrete values. This latter quantity is a "flag" which
indicates which of the two legs the appliance ig on, or whether it ig
L ﬁieed across both legs., Thus the space can be visualized as three
g parallel two~d1men51onal planes,

) The two-and-one-half-dimensional format was selected partly
i because it reduces storage and computation time at later stages of the
1 §rd¢es§, and partly for reasons discussed in Appendix A, The cost of
this format is rather high however. The Program, as it stands, can

not 1e§rn about unbalanced 240 V appliances. No Provision is made for

appllances which draw unequal amounts of power on the two 120 V legs,
I Hae expected that such appliances would be. rare. Results from two
of the three tests described in Section 3.2 show that this expectation
vas 1ncorrect‘ Unbalanced 240 v appliances seem rather common, and
therefore "we will adopt a four-dimensional Tepresentation in future
Yersions. of the ;qad monitor. This will increase the range of loads
#hich can pe taegets.

Thﬁ.tfeght he;f of Figure 3-2 shows the transition-analysis
rtion of theiload monitor, The tramsitions which wers held in the

Pre*buffer'afe'moved to a working buffer for analysis to determine how
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they relate to each other and the set of appliances already learned.
This portion of the algorithm operates as background process, working
in the fraction—of-a-second gaps between the time intervals required
to process the one-second measurements, As such, this portion of the
program typically operaﬁes slightly behind real-time. When the load
monitor is started up, the appliance table is empty, Initial transi-
tions are analyzed to create entries in the table., Later transitions
could be analyzed as new .appliances, or used to update the propérties
of previous}y—learned ‘appliances. Sometimes two entries in the
appliance table need to be fused tcgether into a single appliance in
the 1light of later data., Other times, an entry is split into two
distinct entries, In this manner, mnew data is used to correct and
update earlier estimates. Section 3.1.4 below details the dynamic
cluster analysis technique used to perform these corrections.

The user control portion of the prototype load monitor is
indicated at the top of Figure 3-2. Although only sketched in the
figure, this function of the program is by far the 1érgest in the
prototype, . It permeates and interacts with all of the previously
mentioned portions. By means of a simple command language, it allows
the user to examine and modify the operation of the locad monitor's
different functions. It can generate listings or plots of measure-
ments, transitions, or clusters of transitions which define
appliances. Output can be sent to the computer screen, a printer, a
plotter, or to data files. It also allows for a variety of input
sources. Keyboard input of measurements or transitions can be m,acle-j
for testing purposes. Data files of transitions can be "played back"

to see the effect of changlng parameters. Although the user control
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portion of the load monitor Consumes over half of the total software,
and is essential for testing, analysis and debugging, this much versa-
tility will not be needed in the actual lcad monitor. Therefore, it
is not described in detail in thig report. The commands which it
accepts are listed 1in Appendix C.

3.1.2 Dynamic Edge Detection

The edge detection process described above in Section 2.3 has
been implemented in a "djnamic" manner. By this we mean that it is
programmed in a way which does not require storage and subsequent
processing of a long list of Measurements as Section 2,3 might seem to

imply.. Insteed, a few Parameters are kept ard updated every second

- based on the new measurement. Thig ig done in such a way that the

Program returns. the same Tesults as would be Benerated if all the

‘imgasurements were kept. (It may be useful to review Figure 2-1 while
'% feadlng the following discussion,)

; One aspect of edge detection which uses a long stream of measure-
Wents  is. the averaging process which reducee the effects of measure-
ment noise. All'of the one-second pdwer Mmeasurements which are taken
“duringl‘the relatively steady time period between twg successgive
appllancea—transitions can be considered to be approximations to the
2Ctual pover level that the house is at during this peried. They are
only :approximations because small variations due to appiiance opera-
tiocn éaﬂ meaﬁurement noise wiil always‘be Present. It can be shown
(Siféﬂ " Certain reasonable assumptions) that averaging the entire list
af HessuTenent g will result in the optimal estimate of the actual
Sower 1e¥e1. The ‘actual set of measurements could contain tens of
hougands éf.entries if several hours elapse between appliance tranpsi-

e . :
S, ;ﬂ,otder~to calculate the average of this list of measurements
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without actually storing it, the following formulas are applied every
second to each new measurement vector. The counter, N, is initially
zero, which causes the first measurement to become the first average.
Subsegquent measurements update the average vector and the counter in a
way which continuously reduces the weight of later measurements.

N 1

———— Average + --——— Measurement
N+1 N+1

Average

N = N+1

The algorithm also compares each measurement vector to the pre-
vious measurement vector to check for changes beyond a specified
threshold. A change larger than the specified size defines- the begin-
ning of a time period in which the load is changing. When this
occurs, the steady period is over, =80 the program can gain nc more
benefit from averaging. It therefore computes the net change from the
previous steédy period to the one which just ended (by subtraction of
vectors) and passes this change along to the routines which convert it
to two-and-one-half dimensions and store it in the pre-buffer. This
only requires the storage of three vectors: the average value now, the
average dufing the previous steady period, and the previous second's
yalue. Note that the method which is used results in the progranm
always being one transition behind. Only when a transition begins ca;
the previocus transition be quantified, because the steady period after
each transition is averaged in determining transition size.

Whenever the load is changing faster than the specifie
threshold, the program sets a flag that indicates a period of chang?
is in progress. This flag may be set for several seconds while passiﬂu

over a spike in the load or'waiting for a start-up transient to decay -
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If a subsequent pair of Geasurements differ by less than the
threshold, and the flag is stily set, then thig indicates the begin-
ning of a steady period. Accordingly, the flag ig clesred, and
averaging to estimate the ney steady value beging. The ability to
pass over starting spikes and transients, which we have observed to be
quite 'variable, ig the key to determining consistent signatures,

The dynamic edge detection algorithm ig summarized by the

following stepa:
(1) Initialize the following four-component Yectors to zero:

E — estimate of the actual Power level during this steady
period, based on averaging measurements

L — the last pover value which was steady for at least two
Seconds

P - the measurement from the Previous second,

Clear the flags:

A - met if the pover level ig changing this second

C -~-set if 4 change is in Progress over a number of
seconds.

Repeated measurements of 8 steady load are expected to vary less
than this threshold, (We have used 15 watts as this level,)

Select a noige level for defining significant appliances.

" ©7 Appliance transitions below thig level will be ignored. - (We have
“ . used 70 wetta,)

Then Tepeat steps (2) through (8) every second with the
normalized Measurement vector, M, for that second.

(2} Get the Peasurement M for this gecond and determine the change ip
power, M-P, frop last second to this second. If any component of
=P - eéXCeeds the steady-state threshold, sat g fleg, A, which
indicateg the load is active this second (o:herwise clear A),

(3) I£ 4 is ger ané-C,is clear, a transition is just beginning, so
Process the Previous transition via stepa (3A, B and C), (other-
ise skip these steps):

(38) Calculatg the size of the Previous transition as E-L, This
¥Yalue 15 the output of the edge detection pProcess; if it is
-arger . .thanp the eignificance threshold, it, and the time

‘held in T, 43 Passed to the routines which buffer transi-

—27.



tions for later analysis. (Note the very first such output
is dignored because it is the transition from zero to the
first steady period.)

(3B) Set L to E. This stores the current estimate of the steady
value for use in computing the next transition.

(3C) Set T to the current time, for use later when processing the
transition which is just beginning this second.

(4) If A is set, a new steady period may be beginning, so zZero the
counter N.

(5) Update the estimate, E, which is the average of all measurements
during this steady period, using:

E = (N*E + M) / (N+1)

(6) Add one to the counter N, which notes how many measurements are
incorporated in E.

(7) Set C to the value of A. If set, this records that the load is
changing and we are waiting for it to become steady.

(8) Set P to M., This holds the measurement for comparison mnext
‘second.

(9) Go back to Step (2).

The edge-detection method described here appears to operate quite
satisfactorily., Refinements might be made, however, to improve its
operation in certain circumstances. The updated version of the load
monitor, described in Section 6.2, may incorporate an updated edge
detector.

3.1.3 Dynamic ON/OFF Matching

As discussed above in Section 2.3, it is necessary to determine
the time period that’ the appliance was on in order to tabulatz 1its
energy usage. This ON/OFF matching aspect of the load monitor 18
fairly independent from that of clustering transitions. There are tﬁo
orders in which the pairing and clustering cam Occur. The existing
prototype load monitor pairs first end then clusters the peirs. That
ig, it matches ON transitions with subsequent OFF . transitions ﬂ*&

i
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determine an @mmmeqdeM&mimﬂaﬁmwﬁhtm table of
appliances to see which appliance, if any, it is a cycle of. The
pairing takes place based on the size of the transitions, Two transi-
tions which add up to zero, within a spall thresheld, are considered a
pair. The average of the ON transition and (the negative of) the OFF
transition ie then used for clustering pPurposes. This method js
suitable for the two-state load monitor because we are only targeting
appliances in which the ON and OFF transitions are approximately

. equal,
Note that for the multi- -state load monitor this technique will
: .have to be reversed because the proper matching will not be obvious
f'based on’ size alone, Transitions will be clustered first, and then

the ON and OFF relationships between the clusters will be found, This

'_w111 allow the method to target appliances in which the ON and OFF

i tr3551t10ns do  not match, but will introduce certain complexities
necessarv to find the proper cluster pairings. For example, it ig
posslble that just one of the two clusters might be overlapping with a
claster from another appliance,

‘ With this background the workings of the right side of Figure 3-
2 can now be explained. Transition analysis is centered omn the
lnteractlons between the observed transitions and the table of
appl&ance clusters. The interactlons occur in both directions: neyw
&ran$1tlons force changes in the set of appliances, and the abgserved
ﬁlusters gurde the analysis of the new transitions. Transitions are
held 1n a- data structure we call the working buffer, They are loaded
Lt of the pre—buffer into the working buffer for analysis as space
52d time yermat " The format of the working buffer can be seen in the

Filwmple of Flgure 3-32 and b, which is taken from the test house
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described in the following section. In the top half of the example,

there are eight transitions (numbered zero through seven) in the

working buffer. For each transition the printout records:

Index The place in the puffer. (The earliest positien 1is
numbered zero.)

Leg w" or "2" to indicate ome of the 120 v legs. 3"
signifies a balanced 240 V appliance.

Power The real power component, in watts, of the ON
transition. (If leg "3", the real power on each leg.)

React The reactive power component, in VARs, of the ON
transition.

Time The time of occurrence (in hours after the loud monitor

was turned on).

Mark A flag set to "1" if the transition has been fully
analyzed or "O" if unanalyzed.

New transitions sre inserted at the right side in the working
buffer, and are held there while being paired up in ON/OFF pairs.
They may be fully analyzed and removed in a fraction of a second, oOF
remain there for hours, depending on circumstances. Note that the
transitions are always ordered chronologically; earlier transitions
are found at the beginning of the buffer. The number of transitions
in the buffer is variable. 1f all the observed trangitions are easily'
paired and have been fully analyzed, they will have been removed from'
the buffer and it will be empty. On the other hand, if many
appliances have turned on, but the matching OFF transitions hafe nof.
yet occurred, the buffer can be filled to some specified maximum 9125
with the ON transitions. The oldest transitions which are sittlﬂ“
unmatched in the buffer are removed when space is needed for ﬁﬁ!
transitions. After an ON/OFF pair is found and analyzed, the "mari

bit is get on their entries, vhich flags them as removable, They ¢

=30~



then be deleted from the buffer by a "

is needed.

to make room for new entries to the right,

Index: 0

cleaning” procedure when

Space

The redaining unmatched entries are compressed to the left

1 2 3 4 ] 6 7
Leg: 1 2 1 2 2 3 2 2
Pover: -84 259 -120 228 -236 695 -250 72
Redct: -6 267 1 562 -259 4 =559 2
Times .02 1.22 1,22 1.35 1.39 1.42 1.42 1.47
Mark: 0 1 0 1 1 0 1 o
Comment: Light Refr Light Fura. Refr.‘ Burner Furn. Light
R OFF o urF 01 DTF oN OFF ON
.‘va : I Figure 3-3a Buffer Before Refilling
i Re._gved %1 e — _J“'

eI —————

Index: 0 1 2 3 4 5 {Counter)
Leyg: 1 1 3 2 3 2 (3=240 ¥}
Fower: -84. -120 ¢gs5 72 -694 -70 {Watte)
React; . -g 1 4 2 - -4 -3 (VARs)
Time: 02 1,22 1,42 1,47 1.49 1.55 (Hours)
dorks o o 1} ) 0 0 (lrmatched)

Figure 3-3b Buffer After Cleaning and Refilling

Fig. 3-3.

=-3]1-
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(Counter)
(3=240 V)
(Watts)
(VARa)
(Hours}
(1=matched)

(New Entries)



In the example of Figure 3-3a, entries 1 and 4 form an ON/OFF
pair as do entries 3 and 6. In the first case the refrigerator was on
for .17 hour and in the second case the furnace {oil burner) was on
for .07 hour. The buffer is shown at a point after these entries have
been paired and processed, so they are marked for deletion. After the
marked items are deleted, the remaining entries are compressed into
the four leftmost positions, and two new transitions are placed in the
vacancies to the right, as shown in Figure 3-3b. The new transitions
had been stored in the pre-buffer during the time that the previous
buffer contents were being analyzed. (Note that the two new transi-
tions will form pairs with two of the transitions which remained in
the buffer, so after the next buffer cleaning, only the first two
entries will remain.)

1f the four transitions had not’ been paired and marked as
deletable, and additional items were walting in the prebuffer for
analysis, then several of the oldest transitions would have to be’
removed . In this way, transitions which can not be paired will even-
tually be cleaned out of the buffer,. Unfortunately, if the maximum
buffer size is too small this preccess will also remove ON transitions
for which the pairing OFF transition has not yet occurred. On the
other hand, if the buffer size is allowed to grow too large, it wili
tend to be filled with unpairable transitions generated by multi-state.
appliances, and much computer time will be consumed attempting to fai}
them. Buffer size is therefore one of the parameters to be optimize;
in the design process. |

For the two-state load monitor, & pair is defined as two entries

which meet the following four conditions:
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(1) They are on the same leg, or are both 240 V,
(2) They are both unmarked,

(3) The earl?er has a positive real power component, and
(4) When added together, they result in a vector in which the
absolute value of the real power component is less than 35
Watts (or 3.5% of the real power, if the transitions are
over 1000 W} and the absolute value of the reactive power
component 1s less than 35 VAR (or 3.5%),
The fourth requirement states that the ON and OFF transitions
match within 35 Watts and VARS, or 3.5%, whichever is larger. Thus a
500 W ON transition can be matched to an OFF transition between -465
and =535 W (if the reactive power components also match). The size of
- the allowable disparity increases to 3.5% for components over 1000 W
- because large appliances are observed to exhibit proportionally larger
| mlsmafches. The parameters 35, 1000 and 3.5% were selected based on
meésurement of a few individusl appliances, and will 1likely be
"tweaked” in the future,
When searching the working buffer for pairs, the order in which

;hé entries éré examined is very important. If an appliance has
tu;ﬁ;d' oﬁ and off several times in succession, there can be many
possibier pairings between entries in the buffer, The algorithm nust
not allow an ON transition to match an OFF which occurred at the end
of a different cycle, so that only ON/OFF pairs which truly belong
togather are paired up, Otherwise, the energy consumption of the
appllancé .w1ll be greatly overestimated. The most straightforward
search procedures can make errors of this nature when faced with
ﬁnrtaiﬁrffpés offtr?hsition sequences. .

The hypothétlcal buffer in Figure 3-4 shows a situation in which
B LOOG W apyllahce‘has turned ON and OFF two times in succession. The

Bituation is eonfused slightly by the fact that a 100 W appliance

Lurned QFF'slmultaneously with the first OFF trapsition, to give a -
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1100 W transition, 4s such, the first two transitions do not meet
criterion (4) governing the size relationship between members of a
pair. If the pairing algorithm simply started with the first element
of the buffer, and checked left-to-right for a matching OFF, it would
find the second OFF transition, and erroneously conclude that the
appliance was on for the entire time period. Instead, the correct way
to search the buffer is to start by checking elements which are close
together in the buffer, and gradually increase the distance. First,
adjacent ‘elements are checked for pairs which meet a}l four require-
mente above; if any are found they are processed and marked, Then
elements two entries apart are checked, then three, and so on, until
the first and last element are checked, By this procedure, the second
ON/OFF pair of the sample buffer would be found in the first pass, and
the incorrect pairing is avoided. (The first pair, with the obscuring
100 W addition, will remsin in the buffer to be decomposed by the

methods of Section 2.6,)

Index: 1] 1 2 3 {Counter)
Leg: 1 1 1 1 (3=240 ¥
Pover: 1000 ~1100 1000 -1000 (Watte)
React: 0 0 4] o {VAR=)
Time: .1 .2 .3 . 4 {Hours)
Mark: 0 0 0 4] (1=matched)

Fig. 3-4, Buffer Showing Importance of Search Order.
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After pairing, an  average transition size 1is defined for
clustering purposes. Thig ig Just half of the difference between the
ON and the OFF transitions; For example :f the ON was 500 W, 5 VAR
and the OFF wag -520 W, 3 VAR, the average ig 510 W, 1 VAR, This is
done because the current implementation of the load menitor pairs QN
and OFF transitions before clustering. As mentioned above, the multi-
state algorithm will have tg reverse this sequence. The discussion of
clustering in the next section is equally applicable to either method,

With this much description of the components, we cap now
summarize the background process which operates to repeatedly f£ill,
use, and clean the working buffer, The following Procedure consti-
tutes the lead monitor program:

(1) Initialization, 4ll variables and tables are zeroed out. The
Digital AC Monitor is initialized. ap interrupt process is set
up to receive the one-second measurements, normalize them, check
for edges, and place the edges in the prebuffer,

- (2) Load the Working Buffer. Transitions waiting in the prebuffer

15 are placed into the working buffer untii it is full or the pre—
buffer is empty. If .there are ng transitions to place in the
buffer, the Process waits at thig step until one is generated.

(3) Find and Process Pairs. The buffer is searched for pairs in the
—==—= 220 lrocess Pairg

F adjacent-to—far-apart sequence. For each peir found, the
following steps are taken. The details of how thesge steps are

Performed are given in Section 3,1,4,

{34) The table of known appliances is checked to see if the pair
is a cyele of & new or known applianca,

(3B) If new, a new entry in the table is made. If old, the entry
for that appliance ig updated.

(30) The pair of transitions in the working buffer is marked s0
that neither will bhe matched agair in the future,

(ﬂ)ﬂ Simultaneous Transitions, Multi-state Machines. At this point,
3 ”rémaining unmarked transitions can be checked by the procedure
that analyzes simultaneous transitions and by the procedure that
8nalyzes multi-state machines. Neither of these procedures is
irplemented in the current prototype load monitor.
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(5) Buffer Cleaning. Marked transitions are removed from the buffer
and the remaining unmarked transitions are compressed leftward.

If the buffer is full, which only happens if none of the transi-

tions in it could be paired, then the oldest transition is

deleted, and the buffer is compressed again,
(6) Loop Forever. Go back to step (2},

The main virtue of this procedure, over others that might serve
the same purpose, is its adaptability with respect to transition
analysis. Placing a recent history of transitions in a buffer allows
the easiest analysis (ON/OFF pairs) to be found first, and then
successively more complex analysis (simultaneous transitioms, multi-
state machines) to apply to the unanalyzed remainder, The buffer

format allows unmatched transitions to be kept "on hold" for a long

time period while waiting for their matching transitions.

There is a significant weaknesses of this method which we plan to .

remedy in a future version of the Load Monitor. The algorithm some-
times performs an erronecus ON/OFF pairing across a long time

interval, This happens when an OFF transition and the immediately .

following ON trensition of an appliance are both "garbled" in some way .

to make them unpairable. This might be thée result of other appliances,

switching on or off simultaneously for example. When this occurs, the
two cycles and the intervening time period in which the appliance was
off are erroneously analyzed as a single cycle. The initial ON- is
matched to the OFF transition of what is actually the following cycle.
This is & rare occurrence because it requires two independent coin=
cidences to occur during adjacent transitions of the same appliancéa
but it has been observed to occur. VWhen it does happen, it can c;;sﬂ
a significant error in the monitor's assessment of the applianceis
energy consumption. The monitor tabulates energy as if the asq.ulpll.-al'ﬂiie

was on for the entire time period from when the first cycle hegind
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until the second cycle ends. This may be hours or days, (An
enlightening anzlogy is the problem of a parity error inaa computer
memory: if one occurs it is detected, but two simultaneous errors
within a small memory unit are not detected and may cause serious
problems, )

We believe the sclution to the pProblem is fairly simple, although
it is as yet untried, The ON/OFF matching method described above
relies only on transition size, and never looks at the total power
level of the aggregate load. As such it cagp match a 1 kW ON transi-
tion with a subsequent ;1 kW OFF transition even though the total
power consumption of the house dropped below 1 kW in the interim.
Although it is clear in this case that the appliance could not have
been operating during the time when the total power was less than 1
kW, the algorithm, as it stands, does not make uge of this fact. By

-adding the following condition to the four listed above op page 33,
'ON/OFF matching can be made more accurate:

(5) The unassigned power level between the ON and OFF transi-

————

tions must never drop below the operating power level of the
appliance ‘(with a little leeway given for measurement
noise},

To implement this restriction it is necessary that the working
buffer contain pover  level information in addtion to transition
entries.. This is easily handled by alternating transition entries
with entries which record the average power level between the

transitions. The force of the term unassigged above is understood by

tonsidering that the measured power. level is the sum of the power
Consumed by all of the operating appliances. The algorithm, will have
to decompose that power measurement into its Separate components by

Subtracting the operating power of each appliance from all power
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measurements 1in the working buffer between a matched pair of QY and
OFF transitions. The power level remaining in the buffer will then be
what is 1left over after all the koown appliances are accounted for,
If the level drops significantly below zero at any time, then one of
the pairings made across that time period must be erromeous, of thé
type described above. Examination of the tranéitions surrounding fhé
negative power period will determine which appliance was mis—paired;
The "garbled" OFF and ON transitions which were not matched. will
surround the error, and from their size it can be corrected.

An important benefit of keeping track of unassigned power consum-

ption is that it allows the residual power consumption to be tabuc
lated. The residual power consumption is simply the unassigned. power
after all possible péirings are made. It should correspond ‘to. ;hé
energy consumption of all the small appliances in use. The average
value of the residual will be computed on an hourly time-of-day basis
for weekdays and weekends Just like that of appliances. This should
provide the remaining information necessary for load researchers to.
generate appliance-based models of residential energy consumption,

3.1.4 Dynamic Clustering

The dynamic clustering technique is the single most complex
aspect of the Nonintrusive Appliance Load Monitor. The problem to heA
solved at each moment in time is to take all of the transitions
detected since the load monitor was turned on and arrive at a su1table.
clustering. The correct clustering will maintain a one-to-oné
felaﬁionship betweeﬁ clusters andlappliances' each cluster contalnS'
all the transitions resulting from exactly one appliance. As new

transitions are observed, they should be incorporated into new or
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existing clusters according to whether they were generated by new or
previously learned appliances. This must be performed in a way which
does not require storage of all the transitions observed since the
menitor was turned on (which could be a year or more of transitioms).
Instead, just enough information must be extracted from the transi-
tions to allow proper updating of the set of clusters when a new
transition is processed.

A difficulty comes about because it is extremely unlikely that
the exactly correct set of clusters would be found by any clustering
technique. Instead, techniques are chosen which attempt to maximize
the 1likelihood of a correct clustering, given certain assumptions
about the appliances. Slight changes in the observations can result
in large discontinuous changes in the most likely set of clusters.
For example, given two clusters which almost merge into 2 single
cluster, a technique must be used to decide if there are two similar
appliances gererating the observations or a single somewhat inconsis-
tent appliance. Given any such technique, borderline cases can be
generated which are sensitive to small changes in any single observa-
tion. Thus, all the transitions observed up to a given time could
support the hypothesis that there is only one cluster, but when com-
bined with  the next transition, would support the hypothesis that
there are two distinct appliances. Conversely, the datum might sup-
port the hypothesis that there is only one appliance while the earlier
transitions suggested two, Thus the dynamic clustering technique must
be &able to join and split clusters when necessary based on new
evidence., - Interactions which reorganize groups of three or more
clusters can theén arise by iteratively splitting and joining pairs as

necessary.
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In order to determine whether or not te split a cluster, and ho@
to deo so should it be necessary, we have developed a representafion
system in which each appliance is represented by three ellipses in the
signature space. One, the main cluster indicates the range of regl
and reactive power values which have been observed to form a cluster
of transitions, and which the program is treating as being associated
with the appliance. The other two ellipses associated with “an
appliance are termed the sub-clusters. These represent the sub—ranges';
of real and reactive power values which are the the best estimate, at i
any piven time, of how the main cluster would be s=split into twy -
appliances 1f that were necessary.

Figure 3-5 ‘shows an example of a cluster with its two sub-
clusters. The example is that of the refrigerator of the houée
described in Section 3.2.1 for a one-day périod. The asterisks m;rk
the observed transitions; the ellipses indicate the properties of the
clusters. The center of the main cluster marks the position in thé
signature space of the average ON/OFF transition: 265 Watts and 265
VARs. The shape of the main cluster ellipse Aindicates the range gf
scatter which has been observed about this average. The elongation to”
the left and right indicates that the real power tends to vary fremi
the average far more than the reactive power. The slight tilt to the
upper left and lower right shows there is a negative correlat:nn
between real and reactive components; if the real power is h1gher than
average the reactive power tends to be lower than average, and vice
versa. This is typical of induction motors. It is a consequence: of
the non-linearity of their power consumption with respect to changeBV
in line voltage. The effect is discussed further in Appendix B and in

Lid o
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Reference [1]. The two sub-clusters in the figure cover roughly the
same area as the main cluster, without an intervening:gap. This is
typical of the sub-clusters of a single appliance. If the program had
erroneously joined the transitions of two separate but similar
appliances into one main cluster, we would expect to find two well-
separated tight sub-clusters,

Clusters, whether main clusters or sub-clusters, are represented
by elliptical regions of the signature space, The ellipses are
actually regions of sufficiently high density in a . two-dimensional
normal (Gausgian) distribution, Such a distribution is represented by
five parameters: the x and vy value of its mean, the variances in the x
and y directions, and the covariance between x and ¥. The first two
parameters determine the placement of the center of the ellipse in the
plane. The latter three determine its size and orientation. Ideally,
each appliance would be perfectly consistent, and all measurements
would be perfect, so that evefy-transition from any given appliance
would be identical, and the ellipses would collapse to zero radius.
In fact, this is not the case, so the assumption is made that each
appliance’ will generate .a distribution of transitions which is
approximated by a two-dimensional normal distribution. A normal dis-
tribution will assign a non-zero probability demsity to any size
transition, so a region of the space in which the probability density
is no lower than a specified cut-off level is chosen for assigning
transitions to the cluster. Such a region will always have an ellip-
tical shape. When new transitions occur, they are checked to see if
they fall within the elliptical region associated with any cluster.
If s0, they are considered to be transitions of the associated

appliance. The choice of the probability density cut—off, or equiva-
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lently, the number of standard deviations away from the mean to draw
the ellipse, is an interesting one, with a subtle complication that is
discussed in Appendix A.

Figure 3-6 provides a summary of the conceptual organization of
an appliance representation. Beginning at the top, we assume that out
in the real world there is a physical appliance which generates some
set of transitions as it turns on and off. The set of transitions can
be visualized as a scatter plot in the signature space. Based on a
set of transitions, .an appliance representation is generated with
three components: a main component and two sub-components. Each
component is mathematically a mu1£ivariate normal distribution which
is fit to observed transitions. The main use of such a distribution
is to define a decision set for use when analyzing future transitions.
The decision set is either an ellipse which contains the most probable
portion of the distribution, or else, if the properties of the distri-
bution are not sufficiently clear, a circle. The second use of the
distributions is to provide a principled basis for splitting and
merging appliance representations, as discussed below. Assocéiated
with each appliance representation is a set of statistics learned from
the timing of the transitions. These include a count of cycles,
average cycle duration, and the average energy usage versus time—of;

day profile for weekdays and weckends.

-43-



e

PHYS|CAL .32
" APPLIANCE ~
(TWO-STATE)

~
m*

USAGE

/

SET OF

TRANSITIONS
(SCATTER ‘#‘{3"!&_

PLOT)

APPLIANCE

REPRESENTATION

NORMAL
DISTRIBUTION
(ENTIRE

SET OF
POINTS}

£z

i

2

DECISION SET

ELLIPSE or CIRCLE

@

NORMAL NORMAL
DISTRIB UTION DISTRIBUTION
{ FIRST n SECOND

'SUB-CLUSTER)| ["suB-CLUSTER"

Fig. 3-6.

-id-

POSITION—I L Timine

v

USAGE STATISTICS

TGS

HOUR

ENERGY PROFILE

TIMING PROPERTIES: . |

WEEK-DAYE .|

WEEK-E

DURATION DISTRIBUTIONS - |

Conceptual Organization of Appliance Representation.




The shape of a cluster is constantly adapted to the transitions
observed to fall within it, The coordinates of each new transition
are used to update the five parameters which define the e¢luster. If
the new points tend to appear only at the center of the ellipse, the
ellipse shrinks in size. If they are frequently near the outskirts of
the ellipse, the cluster enlarges, This adaption to the data is a
result of an estimation procedure which chooses the the normal distri-
bution which is most likely to have generated the observed points.
The update is performed in a recursive manner which does not require
storage of all previous transitions. By means of this procedure,
initial estimates are constantly refined. The method used invelves a
finite-memory filter which causes older measurements to be given less
welght than recent measurements, By means of this procedure, gradual
changes in an appliance’s characteristics can be fallowed.

When & new transition is available to update the representation
of an appliance, two independent uses are made of it. The first is
that the parameters of the mgin cluster are updated, as described
above. In addition, one of the two sub-clusters is updated in a
parallel fashion, 1In doing this, the load monitor is simultaneously
following out the consequences of two mutually exclusive hypotheses,
One hypothesis is tﬁat there is a single appliance generating all the
transitions that have been grouped into the main cluster. The second
is that two similar, but statistically separable, appliances are
generating the transitions. In following out the consequences of the
latter hypothesis, the load monitor tries to update just one of the
two appliances. It picks whichever sub-ciuster is cleser to.the new
point, and updates the characteristics of only that sub-cluster, In

this way, 1if there really are two appliances, the two sub-clusters
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should take on their individual forms unless they overlap excessively,

Initialization of the process begins with a single point. 'Any
observed transition which does not fall into any of the existing
appliance clusters is used as the mean of a new cluster, When Onlv;;
one, or even a few, points are in a cluster, it is difficult ;b
estimate its size and shape. The algorithm therefore uses a small
fixed radius (20 W/VAR) to define a circle about the mean value. This
circle is used as the decision set until there are enough points ﬁo 
use the ellipse method. The first point of a new appliance definés
not only the main cluster but one of the sub-clusters. The secqnd--
point 1is averaged with the first into the main cluster and. also
becomes the center of the second sub-cluster. From thg third p°i"Fl
on, one of the two sub-clusters is selected for updating based om
proximity, ‘

An  appliance representation can be split into two appliances if
the sub-clusters became sufficiently distinct, A split/merge statié;
tical test has been developed which gives a measure of the separation
between any pair of clusters. The test is a function of the place-
ment, sizes, and number of observed points in each of the clusters.
Tt determines how likely or unlikely it would be for the two apparent
.clusters to arise by random processes if a single normal distributipﬁ'
were generating the observed transitions. If the two sub-clusters ere
rather ﬁnlikely'to have arisen by chance, they are considered sig-
nificant, and the cluster is split. The test is repeated on =et%c)h
appliance representation after every twenty-fifth observed cycle.ll_li
the test suggests that there are really two appliances present, t?ét
appliance entry in the table is cancelled, and instead, two .ﬁéﬁ

IR I
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appliance entries are created, The main clusters of the new entries
are initialized to the sub-clusters of the eliminated entry. New sub-
clusters are initialized within each of the new clusters in case they,
in turn, need to be split.

The same statistical test is alsg used when considering whether
to join two appliance representations. It ig common that an appliance
which shows a wide range of starting transitions should initially be
learned as two or more separate appliances. As more transitions are
cbserved, the separate clusters grow together into a mass. When the
main clusters of two appliance entries overlap, and a transition is
observed which is ambiguous because it falls into their common area,
they may be joined. The two main clusters are given as argument to
the split/join test, and if it reports that they are likely to have
been generated by a single normal distribution, the two appliances are
merged. Their entries in the appliance table are eliminated, and a
new entry is created. The main cluster of the new entry is formed by
mathematically combining the main clusters of the two original
appliances. These two clusters individually become the sub-clusters
of the new appliance in case it should later be decided to split it.
The split/join test uses a split threshold and a Jjoin threshold with a
slight "deadband" between them to. provide a “hysteresis" which
prevents a borderline appliance from being frequently split and
rejoined. The details of the test are given in Appendix D.

The clustering method developed here has a number of advantages
over previous methods. The use of "parallel sub-clusters" to allow
splitting and merging in a dynamic fashion permits the method to
automatically converge upon the appropriate number of clusters. (Many

existing clustering methods are only appropriate if the ‘number of
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clusters is known.) Thersplit/merge test provides a principled justi-
fication for the number of resulting clusters. The fact that the
method is implemented in a "dynamic" manner allows it to be applied to
large open-ended problems even if only a small amount of computer
memory is availeble. One limitation of the method however,is that the
use of the statistical split/merge criterion to guide the splitting
and merging is only appropriate where the assumption of a multivariate
normal distribution is warranted. Another caution concerning the
method 4is that, unlike most static clustering methods, it is
presentation-order sensitive. If the same set of points were
presented to the algorithm in a different sequence, a =slightly

different set of clusters would result.
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3.2 Results

We have field tésted the current version of the prototype load
monitor in three homes. In each of the tests, current transformers
were installed on the two service legs inside the home at a point just
before the distribution panel. The Digital AC Monitor and HPY845E
were placed inside the home, but only had access to information which
could be measured outside the home. The three following sections
describe the results of testing in thesé three houses. (The three
regidences described in the following sections are named after their
respective towns.)

Generally speaking, we consider the results to be quite succes-
sful. They demonstrate that the nonintrusive appliance lecad monitor
can learn the electrical properties of the major appliances, and keep
track of their ON/OFF behavior and energy consumption., Where the load
monitor has made errors, they do not result from insurmountable
problems, but instead point to ways to make improvements. Our planned
refinements to the load monitor, based on the results of the next
three sections, are listed in Section 3.3.

In each house, we have performed two types of tests, The primary
test is to let the monitor run for a week or twe of normal appliance
usage and then verify that the appliances it reports on truly exist,
We bhave also manually switched individual appliances on and off to
test that the load monitor is indeed processing each transition
correctly when we "look over its shoulder." It is difficult to quan—
tify its performance meaningfully over long periods of time however.
The problem is that we lack an indépendent measurement of how much
energy is consumed by each appliance during the test period. "In order

to make 8 quantified assessment of the load monitor's perfermance, we
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would 1like to run field tests in homes in which utility load
monitoring equipment is already in place. A plan for this additional
testing is given in Section 6.2,

The home which has undergone the most extensive testing and in
which the highest success rates have occurred is the first house
described below, which is the home of the author. It is in this house
that primary appliance data wﬁs first collected and the algorithms
were first developed and tested. Accordingly, there is a concern that
those results have come about because the algorithms or parameter
settings in the load monitor are in some manner tailored specifically
to this house. It is primarily for this reason that the second home
was selected. The third.house was selected so that the performance of
the load monitor could be assessed on two important appliance targets
not present in the first two homes: an electric water heater and
central heat-pump air conditioning.

3.2.1 Natick House

In the one-week test which we consider most representative, the
load monitor learned 45 appliance representations. Of these, only 20
contain a significant number of cycles or a significant amount of
energy. These more significant appliance representations are plotted
in Figure 3-7 and listed in Table 3~1. Only the main clusters are
printed and plotted from each appliance representation. The appliance
names labeling each cluster were provided by the author. The load
monitor does not yet identify appliances.

The insignificant appliaﬁce representations which are omitted
from the figure and table are generated by rarely used appliances?

simultaneous transitions, and program weaknesses. In some cases we
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can identify an applignce, used only once or twice, which wag
correctly learned. The remaining clusters may be components of
appliances which we do not fully understand (such as defrost cycles,
etc.) but are most likely attributable to errors, These errors are
most likely the ocecasional inappropriate matches of stray transitions
left over from multi-state appliances and simultaneous transitions.,
The fact that these rarely occur leads to few cycles being counted,
with little totalized energy, The clusters selected as significant
for discussion below are those which cycled on and off at least four
times, or which.cycled fewer times, but consumed at least one kWH of
energy. Appliance repraesentations which cycled fewer than four times,

and consumed less than one kWH of energy are simply ignored,

] z 2 2
SPLIANCE # LEG REAL RERAC. it ojy o CYCLES MINUTES
IGHT ING 1 1 76 -1 28 6 -4 9 36.3
IL_BURNER 2 2 247 559 &4 13 4 134 8.7
JTHROOM_LIGHT 4 2 144 1 28 & =2 39 23.5
itR_DRIER 6 2 1076 24 34 ¢ 3 1@ 1.8
1ALL_BURHR_ERR 9 1 686 -5 41 5 -5 ] 43.5
AKNOUWN - 19 1 753 -32 25 4 4 ] 3.9
JRNER_ERROR 15 3 429 -5 28 1 1 14 1.2
- 'EN_BRDIL 1?7 3 1791  -21 48 2 4 11 1.1
JRETER_OVEN_BR 23 2 763 -3 1?7 4 2 15 1.1
'IER_ERROR 3@ 2 2673 -15 @ g @ 1 36.0
1BHING_MHCHINE 3% .2 1699 233 51 4 4 18 1.8
0N 560 2 993 -7 18 3 =3 45 .5
ALL_BURMER sz 3 685 -2 17 & 1 517 2.@
STERT 55 3 2648 -24 131 1@ -4 54 1.7
IRGE_BRWR_&_BAKE 58 3 1183 =9 49 2 -t isg .2
FRIGERATGR 63 2 267 26% 3% 4 -x e 11.2
IRSTER_OYEN BK €4 2 1481 -9 g 13 -4 52 .5
GHTS ~ - 65 2 91 -8 83 47 (1 19 165. 4
HNOKN ‘ 66 2 198 -8 ] 0 ] 1 320.9
‘FRIGERATOR_ 67 2 247 263 38 1 5 2 194,8

Table 3-1, Appliances Learned at Natick House,
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The vast majority of the clusters of Table 3-1 and Figure 3-7
were learned correctly by the load monitor., There is a one-to-one
relationship between these clusters and the indicated appliances. As
such, there is little to be said about them. The discussion below
therefore focuses on the errors in the load monitor's conclusions.
From these we see how to continue improving its operation.

Lights and small appliances tend to be fused together into &
cluster just above the noise thresheld, which is 70 W for this data.
The numerous lights and small appliances in the 70 to 120 W range
which can not be resolved individually by the load monitor are visible
d8 two clusters {one for each leg) irn the lower left of the flgure.
This is not an error so much as an indication of the limits of the
device., It can not discriminate the many small appliances ia the
load. The threshold for discrimination appears to be approximately
120 W for this residence,

During this one-week test the load monitor detected 3564 transi-
tions which were large enough to process (i.e. with real power greater
than 70 W), This is an average of about cne every three minutes. Of
those, 83.5 percent were matched into pairs. The remaining unpairable
transitions were eventually thrown out of the working buffer in the
cleaning process. We believe that the majority of the unmatched
transitions were the result of multi-state appliances or simultaneous
transitiéns. In many cases however, transitions which should have
been paired were not paired because they fell just beyond the 35 W or
3.5% threshold for matching which is described in Section 3.1.3. This
occurred mostly with the refrigerator, which shows a wide range of
turn-on transitions. Widening the threshold is ore way to fix this

problem. A more general solution, as discussed in Section 3.1.3, is
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to reverse the current sequence of matching and then clustering. If
ON and OFF transitions were clustered separately, the outlying ON
transitions would be understocd to be part of a relatively large
cluster, which could be matched to the tight cluster of OFF transi-
tions. This improvement, which will be made in the next version-oﬁ
the lecad menitor, should improve its performance.

The refrigerator is visible in Figure 3-7 and Table 3-1 as two
sepérate clusters. Note that the second of these contains only two
cycles while the first contains 308, The smaller cluster contains two
cycles in which the turn-on transition was relatively low, about 20 W
less than the other transitions. Eventually these clusters should
merge into a single appliance representation, The larger of the two
already is the result of the cluster joining procedure. The energy
consumption reported for the smaller cluster is completely incorrect
however. This is because the cycle duration is too’ long--over three
hours. This error came about by the load monitor matching an ON -
transition of one cycle with the OFF transition of a later cycle. The :
forthcoming improvements to the ON/OFF matching algorithm, described.
above in Section 3.1.3 should eliminate this type of error.

‘Note that the figure superimposes decision set ellipses from both
120 V legs and from 240 V appliances. In the case of the dryer and the
small burner, the -two clusters shown for each are actually net
overlapping. - In both cases, a weakness of the current load monitof‘
algorithm has caused it to erroneously learn a 120 V appliance and . a
240 V appliance when in fact there is only a 240 V appliance presqnﬁf
The current version of the software uses a two-and—one—halﬁ*

dimensional transition representation which is described in Sectios

~54-



3.1.1, This format suffers from the weaknessg that it can not repre-
sent unbalanced loads, The software is currently set to arbitrarily
interpret an uﬁbalanced transition as two Separate transitions, one op
each leg, which happened to occur simultaneously, (When the two-and-
one-half-dimensional conversion routine receives an  unbalanced
transition, it simply splits it into two 120-V transitions which are
Placed in separate entries of the prebuffer.) The consequence of thisg
procedure is that when small appliances happen to turn on or off
simultanesusly with the dryer element or small burner, the sum is seen
by the load monitor as an unbalanced transition which ig erroreously
split legwise, Usually these half-appliances can not be matched tgo
anything and eventually are removed from the buffer. But ag a result
of this happening twice, once to the initial ON transition of the
dryer, which includes the 120 V motor, and then a half hour later to
an (OFF transition, the lpad monitor found g psir and incorrectly
determined that a large 120 v appliance cycled once, This accounts
for ‘the 120 v cluster which overlaps the true 240 V dryer cluster "ip
the lower right corner of Figure 3-7. 4n analogous pair of overlapped
clusters were learned for the small burner. Switching to a four—
dimensional format in the next generation load moniteor should rectify
this type of problem. In the case of the drier hqwever, the multi-
state machine algorithm will be peeded to fully analyze its transi-
tions because the heater and motor are always'switched on together
initially but then switch separately,

4  separate type of error with the small and large burners leads
to the 420 W cluster labeled "burner error." The control circuit. in
the stove causes burners te bhe indepeudently switched on and off with

4 period between 4 and 20 seconds, depenﬂing on the heat sgetting.
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These frequent transitions provide opportunity for many types of
simultaneous transiticons. The splitting problem described in the
previous paragraph happens when the burner switches simultaneously
with a 120 V appliance. A separate problem occurs when two burners
happen to switch simultaneously.. This will generate a spurious 240 V
transition which could be analyzed by the method of Section 2.6. As
with the p;evious problem, if it happens rarely it will have no
matching transition and will eventually be removed from the buffer,
With two burners however, it has happened frequently enough that
matching pairs of simultaneous transitions can sometimes be found. If
the large burnmer turns on as the small burner turns off, a 420 W net
transition occurs., This is occasionally matched with a —420 W transi-
tion that occurs when the large burner turns off as the small burner
turns on. This happened 14 times in the week in question, all within
a one-hour interval of cooking. By an analogous process, a 1790 W

' There is also a

transition occurs when the burners switch "in phase.'
c;uster at this power level in the.table, but it is not certain to
what degree the two burners account for it. This is because the broil
element of the stove happens also to generate a 1790 W transition. If
it were not for the broil element, the decomposition method for simul-
taneous transitions would be able to correctly handle both of the
above problems. With the broil element present, it is likely to
introduce a minor error. It would erroneously think that the broil
element was actually two of the burners switching simultanecusly.
This does not present a major problem in this residence however,

because the energy use of all of these elements will be added together

under the heading "cooking." The exact allocation of energy to the



separate elements is not crucial.

A second confusion between cooking elements happened with the
large burners and the bake element of the oven. The two large burners
are 1180 and 1155 W, The bake element is 1125, These are close
enough that they all fall within a single cluster. Perhaps the split—
ting algorithm could eventually separate them but this is not impor-
tant if cocking is a single load category. If Separate clusters were
identified, their energy parameters would simply be added together.
Similar comments apply to the two small burners which afe too similar
to resolve,

A somewhat mysterious appliance is the cluster labeled
"dishwasher component." The load monitor detected eight cycles of a
120 V appliance drawing 750 W and -30 VAR, We have ascertained that it
is some component of the dishwasher, but we do not understand what
component would have a capacitive power factor,

In the course of learning the 45 active appliances, the load
monitor also generated 22 appliance representations which were later
joined in various combinations. This accounts for the enumeration to
67 in the listing of Table 3-1. As far as we can tell, the joining
mechanism always operated correctly. Seven of the listed appliance
clusters were formed bf joining earlier clusters, (Several of those
earlier clusters were the result of joining even earlier clusters.)
The joining algorithm has been tested repeatedly by feeding it two
clusters which are known to be associated with different appliances,
and verifying that it does not recommend merging them. Conversely, it
has been tested by feeding it the two subclusters of appliance repre-
sentations which are known to belong to a single appliance and veri-

fying that it does recommend merger.
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The. properties of the ellipses discussed above, in particular the
nearly one-to—one relationship between clusters and major two-state
appliances, show that the appliance-learning aspects of the load
monitor are performing well. Although this shows that the load
monitor is doing a great deal of learning correctly, an analysis of
the signature space can not show whether or not the load monitor is
tabulating energy properly, - The succese rate for energy analysis can
be estimated by looking at the performance of the load monitor in the
time domain, rather than in the signature space domain.

Almost all errors made by the load monitor are of a conservative
nature. It may miss a pairing because the ON and OFF transitions are
not sufficiently similar, but it rarely introduces an erronecus pair.
It therefore underestimates the energy consumption of each appliance.
(The erronecus pairings discussed in Section 3.1.3 which occasionally
introduce an energy overestimation will, we believe, be corrected by
methods discussed there.) Based on time histories presented below, we
believe the load monitor is currently matching between 75% and 90% ‘of
the ON/QFF pairs that occur. The energy consumption which is reported
for each appliance should therefore be, on the average, between 75 and
002 of the correct value. The exact values vary from appliance to
appliance. (With the dryer for example the energy is greatly under-
estimated, because the missed pairs and their on-time are not indepen-
dent. The initial ON transition includes the motor start, and is
never paired with an OFF transition, and so becomes lost. The first
cycle is by far the longest however, doe to the thermostatic control,
so the bulk of the energy is mnot recognized. The multi-state

algorithm will probably be needed to properly analyze the dryer.)
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To quantify energy analysis precisely, without having to build am
extensive data system to independently monitor each appliance in the
house, we would like to compare the nonintrusive load monitor with
measurements made where other (intrusive) load monitoring equipment is
already in place, as described in Section 6-2, The load monitor to be
used will incorporate varicus improvements which should significantly
improve its performance.

We can get a pretty good idea of the load moniter's accuracy by
looking at an appliance with a fairly predictable ON/QFF history. We
know from direct observation that the refrigera;or cycles approxi-
mately twice per hour, so if the load monitor indicates otherwise, we
can be fairly sure that it is in error. Figure 3-8 shows the load
monitor's analysis of the refrigerator, in the time domain. The upper
plot shows the load moniter's assessment of the ON/OFF history for the
week.. The horizontal lines indicate the times when the refrigerator
is believed to be on. The ticks above the horizontal line show the ON
transitions and the ticks below the line show the OFF transitions.
When an igolated tick appears, it means the load monitor did not find
its mate to pair into a cycle. From the missing ticks, and occasional
missing cycles, we count that the load monitor located over B9Z of the
refrigerator cycles. Because the missing cycles are almost certainly
uncorrelated with the length of the cycle we can also report that the
load monitor located about 89% of the energy consumed by the
refrigerator. Incidentally; the long cycles that occur at 20-hour

intervals are not errors, they are “defrost cycles."
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‘Fig. 3-8. Regrigerator CycleS'and Fnergy Profile at Natick House.

The lower half of Figure 3-8 indicates the energy demand profile
versus time-of-day forlthis=one—week period. It actually shows the
percentage of time which the appliance is om, which is more directly
comparable between appliances than energy. Energy, for load research
purposes, 1is easily ' calculated from this plot given the operating
power level of the appliance. This is the format in which load data
will be output at memthly intervals., We expect that the curve would
be separated into two components: one for weekday demand and one for

weekend demand. Although a week is not & long enough time for the
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profile to "smooth out,"

there is an interesting characteristic that
can be seen in this figure. All three refrigerators (this one and the
ones to be presented below from the other two monitored houses) show a
pattern in which the minimum demand occurs between 4:0C and 6:00 in
the morning and the maximum occurs around 6:00 in the evening. This
certainly makes sense if one considers when the door is usually
opened,

A caveat must be stated concerning Figure 3-8, and others of the
same form below. The timing information shown in the upper plot, which
indicates the date and time of each tramsition, is exactly the type of
information which is discussed in Section 1 as an invasion of privacy
to the occupants. Accordingly, the load monitor does not normally
store or output this information. It is reproduced here by a separate
program which reconstructs the load monitor's analysis for evaluation
purposes. To do this it uses the cluster information that the load
monitor learned by the end of the week, and replays the week's transi-
tions to see which fall within thg decision ellipse. As such, the
declsion set used to reconstruct the cycles is static, while the
decision set used by the load monitor during its analysis was dynamic.
This will result in occasional differences, especially near the begin-
ning of ' the week when the load monitor did not have much data with
which to estimate the ellipses. It would be more proper to state that
Figure 3-8 shows what we expect the load monitor would do during its
‘second week of operation if the first week of data happened to be
repeated.

A second, and more subtle, difference between Figure 3-8 and the
actual performsnce of the load monitor involves the firiteness of the

working buffer, 01ld ON transitions in'the load mqnitor's working
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buffer are occasionally thrown out to make space before the matching
OFF occurs, while the analysis reconstruction program used to generate
Figure 3-8 assumes the working buffer of the load monitor is
infinitely long and never overflows. We have approximately simulated
the finite buffer by not reconstructing cycles of over ten hours
duration. The algorithm in the actual load monitor may result in a
slightly different matching rate, but we do not think this makes a
significant difference in overall performance.

Another view of the load monitor's performance can be seen by
looking at its results in the ffeqnency domain. Figure 3-9 indicates
the ON/OFF behavior of the refrigerator in terms of the lengths of the
observed cycles.. The upper plot tabulates, 1in a histogram form, the
length of time that the refrigerator is om. It indicates that 90% of
the time it is on for a 5 to 10 minute cycle, while 10% of the time it
is on for a period between 10 minutes and 1 hour. It is mever om for
less than 5 minutes or more than 1 hour at a time. The lower plot of
the figure is ean analogous histogram of the OFF duration. The
refrigerhtof .15 never off for more then 40 minutes or less than 10
minutes. These two plots present information which should be very
useful for the identification algorithm when it becomes time to name
the appliance. The boundary pointe separating duration intervals were
selected somewhat arbitrarily here. Further work on identification
may produce a more discriminating set of categorizing intervals.

Appendix E contains ON/OFF cycle plots, energy profiles, and
ON/OFF duration histograms, analogous to those given here, for all the
majbt- two-state appliances in the house. Some of these deserve
special comment. The 0il burner provides hot water and usually cones?

on for a long cycie'shortly after -7:00 AM, due to depand. It also:
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provides space heat, controlled by a day/night thermostat that
switches around 7:00 AM, This data was collected in April, so many of
the longer cycles are heating cycles. We are not sure what the
dishwasher component is that is shown. It is the one menticned above
with a capacitive power factor. The washing machine motor is observed
poorly because its start-up transitions are inconsistent. Compare it
with the dryer to see how many cycles are missed, The dryer is
missing the initial long cycle of each set of cycles for reasons
mentioned above. See the iron for an example of thermostatic start-
up. The first cycle after a long OFF period is much longer than the
average cycle length, This may be a useful identification parameter,
The long cycles of the burners are not thermostatic. The duty cycle
controller leaves the burner on continucusly if the switch is set to
“high"; on any other setting it cycles with a period between 4 and 20
seconds. The OFF-duration histogram for the irom and burners show
mostly short OFF periods. This indicates the "bunching together" of

‘the cycles, which should be a useful identification parameter,
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Fig. 3-9. Refrigerator ON.Duration and OFF Duration at Natick House.
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3.2.2 Lincoln Houge

The second house monitored contains significantly more appliances

than the first. It is also a bit more active, with an average of

slightly over one transition every three minutes during the

monitoring period.

separated into two portions.

For clarity,

12-day
the plot of its signature space are

Figure 3-10a shows the appliances on one

1206 V leg, and Figure 3-10b, the other. Table 3-2 lists the
appliances. The load monitor learned no 240 V appliances for the
residence.
< 2 L !
APP axx O'yy ny JTES: fi
WATER EBED ig i 347 -8 34 i3 3 as! 16.9 =
DISHWRSHER COMP. 17 1 7le -7a 24 34 4 7 3.6 g
DISHWASHER COMP, 22 1 &84 =74 23 S -2 v E.1 1
DISHWASHER COMP. 24 1 763 -rl 48 6 -4 7 6.5 i
HAIR DRYER 27 1 1245 -8 53 14 <] 23 1.6 " |
DISHHASHER COMP. o8 1 731 =71 38 23 € & 4.4 ol
UNKNOWH va 1 187 -3 3g 9 2 52 9.9 A
OVEN 3 1 2437 -32 346 1pEe 89 1e7. 1,7 2!
UNKNOWN T 1 B 3 894 1@2 195 247 18.9 |
REFRIGERATOR g i 188 241 53 19 11 352 26.8 M
DISHWASHER HEATER 81 1 1134 23 48 8 -9 8 16.6 &0
FOOD PROCESSOR 1] 1 1an - 23 16 ? «8 A
TOARSTER QOVEN 98 § ie -] ar 1.0 2.4
FREEZER 11 2 ia 3 387 23.9 8
1208 W 32 2 e - I - ? 9.3 &
1288 W 34 2 1288 16 175 109 -74 11 .6 &
BASEMENT LIGHTS az Z 488 136 3% 99 40 169 3.8 -4l
KITCHEN LIGHTS 41 - 148 185 9 52 8 37 13.4 - 4u
40T TUB PUMFP 43 2 705 464 1@8 34 -26 7 1.8 i
JHENOWH 48 2 4335 -27 69 26 4 23 5.5 il
[RON i 6a 2 az2 -48 37 16 -8 21 ' 4 R
10T TUB PUMP &1 2 688 494 55 i2 -1@ 7 1.8 ud
IMEHOMWH 63 2 428 -61 6D 17 =13 7 1.8 st
288 W 66 2 1261 -2 1@ 97 -7S 12 «3 “ %
NKNOWN 75 2 8z 124 5 44 -1 & 19.3 . I
288 W az 2 1242 5 34 3e 1 7 .8 A
288 W 83 2 1175 13 11 7 & 8 .3
280 W 84 2 1226 5e 259 135 138 11 26,1 B
280 W g7 2 1145  -11 59 2 2 5 .2 e
208 W B8 2 1169 -14 16 7 7 13 .2 !
3T TUB PUMP 93 2 679 S22 318 73 -1a38 233 1.8 £
/EN $3 2 1452 =3 150 se -t 113 2.6 - 7o
1ALL /77" 7 " - T : 14,1 {4
Teble 3-2. Appliances Learned at Lincoln House.
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Several of the clusters havé not been identified. Most of those
that we can name seem to be correctly analyzed into a single cluster,
The hot tub pump and "dishwasher component” seem to be well on the way
to completion. They each consist of several overlapping clusters
which need to be joined together., ' Based on the degree of overlap
between the clusters, this should happen soon.

The clusters comprising the dishwasher component, 1ike the
unknown dishwasher compenent of Natick House above, display a capaci-
tive power factor. The other dishwasher cluster, labeled "dishwasher
heating element,” probably consists of a heater in parallel with some
other componment; this would account for its reactive power consum-
ptien. The time plots of Appendix E show that in each dishwasher
cycle, the capacitive component is on three times and then the heating
element is on once. Other aspects of the dishwasher cycles are'being
missed by the Load Monitor. For example, the power consumption over
time ramps up as the dishwasher fills with water. This also happens
in the Natick House dishwasher. These are the only two appliances in
which we observed gradual rather than step power changes. If there
were many such appliances, the edge detection algorithm might need to
be reconsidered. As things stand, the multi-state appliance algorithm
is needed to fully ledrn the dishwasher's properties.

The oven is interesting in that it is the only 240 V appliance in
the house and it is significantly unbalanced. When on, it consumes
2440 W on one leg and 1450 W on the other. For reasons discussed
above, the load monitor misinterprets its transitions as belonging to
two separate 120 V appliahces.

The large clusters of Figure 3-10b in the 1200 to 1300 W range

are likely to include a number of appliéhces, including a hair dryer,
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Apparently they overlap in their power consumption, and will be joined
together shortly. This points out & fundamental limitation of the
nomintrusive load monitor: it can mot distinguish appliances. which are
very similar electrically. This is 1ikely to be a problem for many
houses when loads in the 1200 W range are congidered, because there
are so many commercially available appliances in this range. Increa-
sing the number of signature components (e.g. including harmeonic
currents) may improve its performance in this area, but it is mnot
clear to what extent these appliances need to be resolved for load
research pufposes.

When we examine the refrigerator in the time domain, as in Figure
3-11, we sSee that almost 90% of the cycles are analyzed correctly.
Appendix E contains additional- plots of appliance activity. 0f these,
saveral are worth special note. The freezer and hot tub pump are also
fairly predictable and can be used to estimate the accuracy of the
energy tabulations. The hot'tub pump is correctly matched over 96% of
vhe time but the freezer is correct only 78% of the time. We are not 2
sure what accounis for this variation. The hot tub pump is,controlledfiJ
by a timer which turns it on for about a minute every hour to run the }E
filter and prevent water 4n the pipes from freezing., The two 1ong;ﬁ
cycles are due to manual control when it was: used, Heat loss to
ambient is clearly the driving force behind the water bed heater's
rather interesting energy profile. The energy profile of the kitchen
light is also rather illuminating, showing @ rhree-meal-per—day
pattern. The two "gven halves" are actually the same oven, controlled -
by a single switch, As mentioned above, the lack of a four-

dimensional transition representation causes two separate 120 v
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ON/OFF CYCLES

TIME ON (%)

appliances to be learned instead.

The close asimilarity of these two

independently learned plots is therefore to be expected, and confirms

the load monitor's performance.
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Fig. 3-11. Refriperator Cycles and Energy Profile at Lincoln House.
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3.2.3 Acton Houge

The third test house is quite large and contains

appliances.

separate 200 A services enter the house at

bution panels.

Only half of the house

Although only one of the two

was monitored,

however.

a wide range of

Two

d feed two separate distri-

panels was monitored, it

is the larger of the two, end services moTe appliances than the

average house,
appliances 1learned by the load monitor over a one week period,

clarity, the figure is divided between two

Table 3-3 and Figure 3-1

leg 1 are on the first plot,

2 show the

significant

For

plots: 120 V appliances on

while 240 V appliances and 120 V

appliances from leg 2 are on the other.

clusterings, in one<tg-one relationship with appliances.

HROOM LIGHT 9 1
LL APFLS, 13 1
« LIGHT 15 2
NOMWN 18 1
HROOM LIGHT 17 4
AGE DOOR OPENER 21 2
NOWN 24 2
ER PUMP (SPLIT> 27y 2
ER PUMP (SPLIT> 37 2
HROQOM LIGHT 45 i
ER PUMP (SPLIT> 4B {
IUMIDIFIER 54 1
‘RIGERRATOR 57 2
'MRDOM I.R, S99
. MAKER 63 1
Y. LIGHT 71 1
"ER HERTER 74 3
N 84
"ER HERTER 83 2
iLlL. APPLS. 93 =
'ER PUMP ag a
it REFRIGERATOR 198 1

Table 3.3,

RERAL

183
93
275
i R-1-)
are
335
137
685
13-
333
708
62
239
284
298
2as
2224
1841
2196
87
677
86

Appliances Learned at Acton House.

REAC.

56
-4
- 14
-24
46
122
15
447
448
17
445
534
448
-4
199
-3
-20
-8
-19

442
85
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22
47
13
68
13
38
17
36
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Again, there are many correct
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The problem of the two-and-one-half dimensional representations
has agein caused an erroneous splitting of a 240 V appliance into two
120 V appliances. The victim here is the water pump which cycles
several times per hour on the average. When it switches on or off
simultaneously with a 120V appliance, an unbalanced transition
occurs, analogously to the case of the small burner discussed in
Section 3.2.1,

This house was selected in order to test the load monitor on an
electric water  heater and on central air conditioning. The water
heater was learned with great accuracy. It appears that the two
clusters‘of Figure 3-12b and Table 3-3 may correspond to the upper and
lower heating elements. We have measured them separately and deter-
mined that they differ by approximately 30 W. Because they are so
similar it is likely that they will be joined together into a single
cluster at some point in the future. They already overiap con~
siderably. It does not appear to matter in this case whether or not
this happens however, as their energy consumption will simply be
totalled if they are separate.

The load monitor did not have a chance to learn sbout the heat
pump, because it did not turn on during the test period. We are
fairly certain however, that it would not have learned it properly.
Examination of its operation shows that it is definately a multi-state
machine, with a complex control unit switching a compressor, an indoor
fan, an outdoor blower, a backup resistance heater, and relays, Its
operation seems well beyond the scope of the two-state algorithms,

Analysis of the refrigerator transitions in the time domain

(Figure 3-13) shows an accuracy of about 75 percent, This lower rate
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is probably attributable to the greater appliance activity here com-

pared to the two previcus houses, The load monitor detected 35364

transitions over 70 W in this week. This comes to about cne every two

minutes on average. This will result in more simultaneous transitions

which can not be analyzed by the current version of the load monitor.
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Fig. 3-13. Refrigerator Cycles and Energy Profile at Acton House.

Appendix E contains the load monitor's plots of the major two-

state appliances of this house. Most of these should " be self-

explanatory by this peint. The close correlation between the well-
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water pump and the hot water heater is worthy of note, Their high
usage from 11:00 to noon is attributable to one of the occupants who
tegularly showers at that time,
3.3 Recommendations

We ‘consider the results of the three field tests above to be
quite satisfactory for the current state of development of the load
monitor. For most two-state appliances it is performing up to our
expectations, but based on these field trials, we have have been able
to pinpoint certain areas where problems exist, For most of these
problems, we feel we know how to adjust its operation and effect
improved operation. These modifications will be made and tested in
the near future. Specifically, we Plan to incorporate the following
adjustments before undertaking the multi-house test described in

Section 6.2,

(1) Simultaneous Transition Analysis. As described in Secti: 2.6,
we have already developed and tested algorithms which detoct and
decompose the spurious transitions which are formed when two
appliances change state within the span of two or three measure-

ments. These techniques have not yet been incorporated in the
load monitor.

(2) Faster Sampling. The load monitor currently samples the load at
a rate of 1 Hz, By increasing this somewhat {but by less than an
order of magnitude) the number of coincidental simultaneous tran-
sitions will be reduced. This will ease the burden placed on the
simultaneous transition analyzer,

(3) Four Dimensional Format. Use of true four-vectors to represent
transitions will allow unbalanced 240 V appliances to be learned.
Tt will also allow coincidental simultaneous transitions of a 240
V appliance with a 120 appliance to be analyzed,

(4) Clustering before Pairing. By clustering transitions before they
are matched into ON/OFF pairs, the load monitor will be better
eble to handle appliances, such as the refrigerator of Section
3.2.1, which show variable transitions. This is alsc a necessary
Step towards the multi~state appliance load monitor.

(5) Unassigned Power Lavel, As described at the end of Section
3.1.3, it is necessary to keep track of the total power consum-
Ption of the residence between transitions, and allocate it to
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(6)

)]

the appliances which are determined to be operating. With this
information, erroneous palirings ascross intervals when the appli-
ance is off can be avoided.

Residual Energy Consumption. For load researchers modeling resi-

dential energy consumption by totalling the enmergy from various
appliance classes, it will be necessary to know the time-of-day
properties of the residual energy due to small appliances, after
all the major appliances are accounted for, This is determined
from the unassigned power level.

Multi-State Appliances. We would like the load monitor to learn

multi-state appliances properly, or at least not have them cause
errors in its analysis of two-state machines. The wmethod by
which to do this is not as clear as the above recommendations
however. As described in the following section, we continue to
address this problem.
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4.0 MULTI-STATE MACHINES

The load monitor described in the above sections is limited in
that it is not directly applicable to multi-state machines, If a
residence contains an appliance such as a dishwashe; or electric
dryer, with a.motor and a heating element, it could not learn its
characteristics or erergy consumption. . The expected behavior of the
load monitor depends on the control mechanism of the appliance, If,
as is typical with dishwashers, the motor and hesting elements
generally turn on and off at separate times in the wash cyele, the
load menitor should be able to learn their separate characteristics.
It would total their energy as two éeparate appliances, not as one.
On the other hand, if, as is typical with dryers, the control
mechanism always starts the heating element wken the motor starts, the
motor will not be learned. The OFF transitions of the motor will
never have a matching ON transition. (The heating element will be
learned, however, if it cycles independently with a thermostat, but
its energy consumption would be underestimated,) These charac-
teristics have been observed st Natick house, described above in
Section 3.2.1.

These shortcomings may or may not be fatal to the method,
depending on the class of targeted éppliances, To improve the pérfor—
mance of future versions of the load monitor, it is necessary to
develop methods of automatically learning the properties of multi-
state appliances. This is an ongoing research area, as discussed in
SBection 6.3, In this section we describe the techniques which
currently seem +to be the most promising., Section 4.1 describes a
system for representing multi-state appliances which could be used by

a variety of algorithms. Section 4.2 outlines algorithms which can
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handle parts of the overall task. We stress that they are still under
development and totally untried.
4.1 Representations

In order for an algorithm to learn, manipulate, keep track of,
and report on multi-state machines, it must have a mathematical form
for representing them. We have spent some time developing a formalism
which seems suitable for the purposes of the load monitor. Each
appliance can be represented by a finite state machine (FSM) which
indicates the possible states that it can be in, and the possible
changes of state. Examples of such FSMs are piven in Reference [1].

The basic form for representing an n-state FSM is an n-by-n
matrix, The 1ijth element of the array indicates the cluster of
transitions which is associated with the transition from state i to
state j. As such, it is simply a pointer to an entry in a cluster
table similar to that which we currently use for two-state machines.
If no transitions have been dbserved from state i to state j, then the
entry would be a "flag" indicating that is is not a legal transition.
The cluster table would contain parameters defining the cluster and
subclusters along with a list of pointers pointing back te the FSM
states which the transitions emanate from. These '"back pointers"
allow a rapid lookup of all the possible state changes to consider
when a transition is to be analyzed. It may.also be worthwhile to
allow clqsters of common simultaneous transiticns (such as the 400 W
simuitaneous burner transition of Section 3f2.1) to be formed with
pointers indicating which pair of appliances chenge. This will allow
rapid sanalysis of simultaneous transitions without having to repeat

the search process described in Section 2.6,
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One additional functiog of the representation is to 2llow only
well formed FSMs, which meet various constraints of suitability. For
example it must be possible to get from any state of a FSM to any
other state in. a finite number of transiticns; there can be no
inaccessible states, This constraint and others are explored in
Reference [1]. It is sufficient here to note that the representation
which we have in mind allows these constraints to be verified by
relatively simple matrix operations, The representation also
straightforwardly allows a factoring operation defined below in
Section 4.2.4,

We have developed a canonical form which uniquely picks out a
single FSM representation matrix from the many which might equiva-
lently describe any given multi-state appliance. Basically, it per-
mutes the row and column entries of the transition matrixz into a well
defined ordering without affecting the connectivity of the states. 1In
thél resulting sequence, the real power component of the states is
ordered from lowest to highest. It therefore results in a standard
form for each appliance which should simplify the identification
procedure. In addition, during the process of canonicalization, addi-
tional constraints of the type discussed gbove are verified.

4,2 Algorithme

The multi-state algorithms, like the two-state aigorithms, can be
divided concep;ually into two parts: the part which Alearns what
appliances are in the house, and the part which keeps track of the
appliances after they have been léarned. The second part is certainly
the simpler of the two. To keep track of appliances it is only
necessary to keep track of a "state pointer" for each finite state

machine which indicates which state it is in, New transitions are
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mined to see which appliance they should be associated with. The
responding state pointer is then updated sccordingly. Use of a
king buffer analogous to that degcribed in Section 3.1.3 allows a
ig series of transitions to be stored until a cycle is complete. In
. case of multi-state appliances, a cycle will be some path through
: machine beginning and ending at the CFF state. (This reduces to
ON/OFF pair in the case of a two-state machine.) By waiting for a
nplete cycle to be observed before processing the transitions,
-ious types of errors can be reduced. When an ambiguous transition
‘present, subsequent transitions can be an aid in disambiguation.
ter keeping track of the state pointer of each appliance, tabulating
s energy usage versus time of day is a simple bookkeeping matter.
Although Jjust a sketch, we are confident the ideas above can be
panded into a method which can follow the activities of each
pliance, if their structure is known. The more difficult aspects of
e multi-state algorithm involve learning the structure of each
jpliance. We have a number of ideas how to do this, but are less
srtain of their effectiveness. In particular, we are unsure how they
11 behave in the presence of "noisy" transition data. We can pro-
ide mathematical justification for parts of the algorithms in the
deal situation in which the driving transitions are not "degraded" by
he presence of other appliances switching simultaneously. 1In the
ess than ideal case that we know will occur, the performance of these
lgorithms will be affected. It is possible that this will cause the
edrned appliance representations to grow unstably or otherwise mis-
wehave in an unacceptable manner.

At this point in time, the algorithms have the form of a set of
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heuristics that each apply in certain circumstances. Four of these
aspects of the overall algerithm seem clear enough to us that we . can
set them to paper in the following sub-sections. Generally speaking,
these four parts of the program would execute in the order in which
they are listed below. We repeat that they are totally untried.

4.2.1 Clustering

The transition-forming portion of the multi-state algorithm is
identical to that gf the two-state algorithm. The same measurements
are taken and normalized in the same manner described in Sections 2,1
and_Z.Z. Transitions are then formed by the edge-detection process of
Section 2.3. The first operation which the transitions underge is
clustering. As discussed in Section 3.1.3, clustering must occur
before transitions are matched up into ON/OFF pairs, or cther more
complex cycles, because the proper matching will not be obvious from
the transitions alone. Instead, each transition will be examined to
see what cluster it belongs to, and associated with that cluster will
be a 1list of appliance representations and states that it may enter
into. When a cluster is ambigucus in the sense that its transitions
may indicate a state change of more than one appliance, earlier and
later transitions in the buffer should be able to provide enough
context to determine which appliance changed state if the appliance is
already learned. It is less clear at this point how a new ambiguity
would be learned.

In what follows below, it is assumed that clustering is carried
out optimally, with no ambiguity or error. That is, we assume each
cluster of transitions can be part of only one appliance, and there is
only one peir of states that the tramsition can link. Although this

will not be the case for some clusters, it is a reasonable beginning
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point for developing an algorithm.

4,2,2 Cyclic Factor Analysis

Given a series of observed transitions in the working buffer, the
simplest thing which can be done is to perform a two-state analysis.
Those transitions which are easily matched into ON/OFF pairs can be
processed immediately. Reﬁoving them from the buffer then leaves
only the more difficult transitions associated with multi-state
appliances. Note that the ON/OFF pairing is now an operation on
clusters, not individual transitions. Twe clusters are sought out
whose means are approximately negatives, within some threshold, and
which contain approximately the same number of entries. The
transitions associated with these clusters ere required to be alter-
nating, or nearly so, in the working buffer. If all these conditions
are met, the clusters are paired into the ON and OFF transition
cluster of a two-state appliance,

By a generalization of this process cyclic finite state machines
can be learned. A cyclic finite state machine is one in which the
states are linked together in a ring so that every state is entered in
sequence in each cycle from OFF to OFF. The ratcheted rotary switch
of a three-way light bulb is an example of a cyclic finite state
machine. A set of clusters whose mean values add approximately to
zero and which contain transitions that occur in the buffer in a
cyclic sequence can be sought out. A technique which tabulates the
different transitions which occur between successive occurrences of
any given transition can identify the cyclic chains of clusters in a
relatively simple and rapid manner. If the number of transitions of

the clusters match approximately, and the mean values add approxi-
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mately to zero, then we can be confident that the cyclic ordering is
not merely coincidental. Such clusters are then joined together into
# cyclic finite state machine.

4.2.3 Traversal Analysis

The transitions which remain after all cyclic f£inite state
pachines are removed from the buffer may belong to the more complex
multi-state machines. A method which we call "traversal analysis,”
because one imagines that one is travelling along the arcs of the
machine from state to state, can be used to learn complex appliances
with arbitrary state conmections. Unfortunately, the method is very
sengitive to degraded transition data, so we must assume at this peint
that transitions have been clustered perfectly with a one-to-one
relationship between clusters and sctual appliance state changes.
Assume further that all the transitions remaining in the working
buffer belong to a single appliance. If several multi-state
appliances have been used, this can be corrected for by the methods of
the next section.

Basically, the traversal analysis procedure is to examine the
transitions in sequence, while keeping track of a state pointer that
indicates which state the machine is in after each transition. The
appliance representation is considered to be partially learned at all
times. New data may or may not be used to update it., When a transi-
tion occurs, there are two possibilities, Either the state which the
algorithm believes the appliance to be in has an arc leading from it
that corresponds to the new transition, or it doesn't. If it does,
the “recqgnition" aspect of the algorithm simply updates the state
pointer so that the appliance is considered to have changed state., If

the transition is unexpected, however, then the "learning" aspect of
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the procedure updates the appliance representation sc that the new
structure is compatible with the entire transition sequence, This
will require adding a new state or the merger of two existing states,
depending on various conditions which will not be discussed here.
Different assumptions reparding the possible structure of appliances
lead to slightly different update procedures which will operate
differently in certain circumstances. The most suitable conditions
have not yet been ascertained,

This portion of the multi-state algorithm is the most crucial,
because it éppears to be necessary for learning arbitrary finite state
machines. It is also the most disconcerting beéause it seems to be
very susceptible to imperfect data. Much further development will be
necessary before we have confidence in such a method.

4,2.4 Factoring

If the above procedure is carried out on a set' of transitions
which arise from two or more independent multilstate machines, a
single finite state machine will be learned which must be broken apart
into two separate appliance representations., This requires a process
which is akin to factoring composite integers into primes. If the two
machines opérate totally independently, the resulting transitions will
be analyzed into a complex FSM which is a product, in an abstract
mathematical sense, of the separate FSMs, Reference [1] describes
this product/factor relationship in further detail, Given such a
product FSM, an algorithm has been developed which can factor it apart
into its component FSMs with little difficulty. Complete independence
between the compenent FSMs is unlikely however, Over a limited time

span, it is probable that certain combinations of states will not have
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occurred. Therefore the factoring process must bhe developed further
so that it can reliably factor composite FSMs ever when they change

state in a dependent fashion. This work is in pProgress.
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5.0 APPARATUS

The prototype nonintrusive appliance lead monitor described in
Section 3 is implemented in general purpose hardware which has allowed
flexible development and testing, but which is not suitable for a
commercial device., This section describes the probable form of a
commercial load monitor. Section 5,1 lists the computational require-
ments of the device while Section 5.2 suggests two alternate physical
packages.

5.1 Computational Reguirements

Based on our experience with the prototype load monitor in
general purpose " hardware, we are confident that the necessary
algorithms can be satisfactorily implemented in a state-of-the-art
microprocessor system design. No unusual speed or memory capability
is required. The most difficult aspect of the design might be main-
taining reliable operation and sensor accuracy over the extremely wide
range of operating temperatures experienced by field equipment.

4 likely hardware arrangement is sketched in Figure 5-1.
Although the details of th: architecture are not worked out, the
general characteristics seem fairly clear. The components are
described from top to bottom and left to right:

Power Low voltage dc power required by the sclid-state electronics

Supply is provided by a power supply coanected to the utility side
of one of the 120 V ac lines.

Backup Key components of the system are powered by a rechargeable

Battery battery. In the event of power failure the load momitor
does not continue all of its normal functions (because there
wvill be no appliance usage to monitor). Information
describing the appliances learned up to that point would be
maintained in RAM however, and the clock/calendar would
continue to keep time,

Sensors Current transformers provide a signal proportional to the

current flow in each of the two leg circuits. One of the leg
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Micro-
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voltages is monitored. Signal conditioning circuitry
isolates and scales these ac signals as necessary for inter-
facing with the digital circuitry. & temperature sensor
{not shown in the figure) for measuring ambient temperature
or' temperature-humidity index will provide data for corre-
lating with appliance usage.

Analog to digital conversion circuitry is used to sample the
ac current and voltage waveforms. (The microprocessor logic
will calculate the RMS voltage, and real and reactive power

of each leg, wusing the techniques dsveloped for the Digital
AC Monitor [1].)

Read-only memory is provided with all the software necessary
for the algorithm, We expect this might require on the
order of 10 to 20 K bytes of ROM.

Random-access memory is used to store the tables of
appliance characteristics and energy usage slomg with all
other working quantities. We expect this might require on
the order of 100 K bytes of RAM.  Battery backup obviates
the need to relearn this jinformation in the event of power
failure.

A real-time clock/calendar is necessary so that the energy
consumption of each appliance can be categorized by time of
day and weekday/weekend. The clock is maintsined by battery
backup so that the correct time is available after a power
failure. (Additional clotking is required, but not shown,
for controlling the data sampling intervals.)

Each load monitor will be provided with a umique serial
number, which is made available to the software for tagging
its- output. Thereby, the information from distinct load
monitors is not confused at the central processing facility.

Output could be made in one of two manners {see below). If
a telephone link is desired, a modem would provide the
interface between the load monitor and the telephone line,
If the meter-reading option is preferred, an input/ocutput
port would be used at monthly intervals. In addition to its
output use, the telephone link or I/Q0 port would be.used for
synchronizing the real-time clock.

The main processing functions would be carried out by a
microprocessor which contrels all of the other hardware in
accordance with the program read from ROM. At this point
there appears to be a great deal of flexibility in selecting
a microprocessor family for designing the system.
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5.2 Mounting

Based on the above computational requirements, we expect that the
entire load monitor could be made to fit in a space half the volume of
a conventional kilowatt-hour meter. Two mounting scenarios seem
likely.

The first mounting tgchnique is to place the hardware in a kWh
meter extension collar as shown in Figure 5-2, All of the hardware of
Figure 5-1 could be designed to fit in a collar such as those manufac-
tured by the Ekstrom Corporation. The current transformers would be
built in, providing the sensor readings. This package would provide
the quickest installation and removal time, and allows the kWh meter
to remain in place for revenue purposes.

Monthly output of data could easily be arramged in one of two
ways. If a telephone line were brought to the meter, a computer at
the central load research facility could be programmed to auto-
matically call up the load monitor at monthly intervals to read its
accumulated data. This option allows for completely automatic data
gathering at the the cost of installing a telephone line out to the
house, and monthly phone bills., The second butput option ia to have a
connection plug built into the side of the load monitor which requires
monthly access., A portable storage unit could be carried by meter
readers from house to house and plugged into the load monitor. 1In a
second or so the month's worth of data could be transferred intc the
portable unit which would later be fed into the central computer. 4
briefcase-sized unit could be designed which would hold data from
several hundred residences. {We have not pursued a thirc option for

data retrieval, which is to tise power line carrier technicues.)

-89-



EXISTING
SOCKET

METER-EXTENSION
COLLAR CONTAINING
APPARATUS

EXIST
REVEILE
METER

CONNECTION

FOR PHONE LINE
OR METER-READER UNIT

Fig. 5-2. Collar Mounted Load Monitor.

=90~



A second mounting option exists which also allows for the the
above data retrieval techniques. This option is to place the load
monitor = in a box which would be placed on a utility pole with a pole
transformer as in Figure 5-3. From this point there would be ready
access to several houses from one instrument. A single load monitor,
built as in Section 5.1, but with proport;onally more RAM memory,
could be designed to multiplex between four or more houses. Current
transformers would be placed on the secondaries to each of the houses
served by the transformer, and connected, along with a single voltage
signal, to the lbad monitor. Although pole mounting would require the
use of a line truck and more installation time than the kWh meter
socket technique, this could be offset by the equipment savings
brought about by multiplexing. The hardware of Figure 5-1 (with the
exception of RAM) would be shared by several residences, greatly
reducing the monitoring cost per house. Pole mounting would also
provide easier access to a telephone line for data retrievsl. If the
direct access option were preferred, this could alsoc be arranged at
the pele. An additional virtue of the pole mounting is that the
monitor could be installed without any service imterruption, In
contrast, installing the socket mounted monitor causes a short power
loss to the occupants,

We - are not certain how the temperature sensor would best be
mounted in the collar-mount scenaric. It seems that any arrangement
in which the sensor is attached directly to the monitor will be
susceptable to microclimate problems.' For example the kWh meter
socket, and therefore the sensor, might be shaded at certzin times of

the day even though the rest of the house is constantly in the sun.
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If the sensor were attached to the end of & connecting cable, it could
be placed in a more favorable location. This would require running a
cable along the outside of the house to be monitored, however, which
would probably be unacceptable, For the pole-mount scenarioc, the
connecting cable would not present a problem and would mcst likely be

the preferred method.
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FUTURE DIRECTIONS
Along with refinements to the algorithms listed in Section 3.3,
e are three major aspects of the project yet to be undertaken. We
ct that the £first two can be completed, and the third can be
ificantly advanced, in the next year.

Tdentification Alporithm

The details of the identification algorithm have yet to be worked

This algorithm is the part of the method‘which assigns common
s such as "refrigerator" or "water heater” to the observed
iances, We will initially concentrate on the two-state versien of
algorithm (which only attempts to identify two-state appliances),
later see to what extent it is necessary to modify it for multi-
3 appliances. This task can be broken into three sub-tasks:

(A) Selecting Parameters. The most difficult aspect in the
3n of the identification algorithm is to select the parameters by
b to classify appliances. A possible set of parameters is the
>wing:

Real Power

Reactive Power

120 Volt, 240 Volt Balanced, or 240 Volt Unbalanced
Time-of-Day Usage Profile

Usage versus Temperature Relationship

On-time and Off-time distributions

rmining the exact set of features to use will require considerable
ght into the discriminatory information available in each feature
the discrimination required for the set of targeted appliances. It
desirable that the features be capable of resolving the appliance
ses as finely as possible without redundancy. All software

ld be designed so that the set of parameters could be changed at a

re point, if necessary, without losing the use of the data
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collected with the earlier parameters. (The relationship between
power and applied voltage of each appliance may be useful as an iden-
tification parameter as discussed at the end of Appendix B,)

(B) Methodology, & classification and lookup methodology, along
with associated algorithms, must be designed. The selected features
will be used to define a multi-dimensional feature space. Different
;egions of the space will be assumed to correspond with different
classes of appliances, in either a binary or probébilistic manner.
Thus an algorithm can be confronted with the observation that there is
some 4000 Watt, 0 VAR (approximately) balanced 240 Volt appliance with
given temporal characte;istics. and would be expected to conclude
something like "There is a 92% probability that it is water heater, 3%
probability that it ig a space heater, and 5% probability that it is
unknown to the data bage." lThermethod will presumably accept high
probabilities (above some specified threshold) as realities, and
declare that the unknown appliance is a water heater, or else request
the dntervention of a human expert to'complete the decision making
from that point. We expect that the algorithms to perform this lookup
and conclusion task will be relatively straightforward to design once
the exact methodology has been decided upon.

(C) Data Base Menagement System (DBMS). This will be cesigned to
allow load researchers to examine and modify the appliance class data
base used by the lookup software. Thé DBMS will allow new appliance
classes to be added as they are encountered, and will allow modifica-
tion of the parameters of existiné classes as required. For example,
it might turn out that the refrigerator of some residence is not

recognized by the Lookup algorithm because it consumes less reactive
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rer than was initially expected of any refrigerator. A load
iearcher confronted with this unrecognized appliance might conclude
t it is a refrigeratof from properties such as its duty-cycle, and
1d then modify the data-base so all further refrigerators of this
ufacture would be automatically recognized. Through this sort of
ective work, which in extremely difficult cases might involve
tacting the residents, we expect that the data base will converge
n a state which performs virtually automatically.

To facilitate this process, the DBMS will provide graphic
abilitiea to plot out the regions of the space assigned to given
liance classes, and scatter plots of the location of individual
liance ellipses in the space. It should also provide & means of
itifying if there are any large areas of the feature space assigned
an appliance class but which have not been seen to contain any
oples, With this information, initially over-large assumptions of

range of an appliance class can be reduced along the required
insions when necessary.

To the maximum extent possible, the DBMS should be compatible
| some existing commercially supported DBMS system(s). This will
Jditate user support, provide software maintenance, and greatly
ice the design costs.

MIT will provide an initial data base of appliance classes based

survey of published information and limited field testing. Only
nsive field experience can provide the information necessary to
ne the data base.

Multi-house Test

The second major aspect of the development process which ﬁe would

to see performed in the next year is a multi-house test. At this
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point in our research, we feel the project weuld benefit greatly by

‘testing the algorithms in approximately ten houses. We Preopose that

MIT shall prepare a prototype appliance load monitor to be installed

for three to four months in a set of houses selected by utility load

tesearchers. Instrumentation for collecting concurrent appliance load
data should already be in place at the selected houses,

The prototype load monitor will take the form of a portable IBRM-
compatible computer with a Digital AC Monitor as the sensor device and
floppy disks as the output medium. Our experience to date indicates
that such a geﬁeral—purpose computer has sufficient computational
Power and memory to easily serve the Purpese.  This hardware is not
weather resistant and consequently must be placed internal to the
homes, but will only: measure the aggregate load which would be
available to a nonintrusive load monitor external to the home.
Installation should take less than an hour,

Software will be written to implement the two-state algorithms
discussed above in Sections 2,1 throﬁgh 2,7. The software will be
written in a high-level compiled language to facilitate its transfer
te other hardware, Ve expect that a considerable portion of the
software written for this task may later be directly usable in .a
special-purpose microprocessor-based commercial product.

The benefits of the multi-house test are as follows:

(1) It wili prove that the method is capable of operating with g
variety of residential appliance mixes. The sites can be
selected so that 8 variety of models of each of the targeted
appliance classes are observed. Different climates can also be
sought out, This should eliminate any concern that the auccess
to date is the result of testing in fortuitous environments.

(2) It will allow the performance of the algorithm to be quantified

precisely. By choosing residences in which {intrusive) appliance
load monitoring equipment is already installed and operating, we
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will be able to make an accurate comparison of the nonintrusive
method's results with more sclid figures than we have in our
previous field tests.

3) It will provide the opportunity to refine the algorithms based on
a wider field experience. A commercial version of the Load
Monitor designed after the multi-house test is certain to perform
more accurately than the best that could be designed without such
a test.

4) It will provide information necessary for developing and testing
the identification algorithm, as discussed in Section 6.1. This
offort will be carried out simultaneously with the multi-house

test. Ten houses  of appliances should be sufficient for
proposing an initial appliance-class data base for use by load
researchers,

'5) It will allow us to assess the need for the multi-state appliance
algorithms. ILf the success rate of the device is low in some of
the test locations, and the poor performance is attributable to
the presence of multi-state appliances, then it will cenvince us
that the multi-state algorithms of Section 4 must be develeped
further and incorporated in a commercial versicn of the proto-
type. Conversely, if the success rate is high in spite of multi-
state appliances, it might suggest that a two-state algorithm is
sufficient for the purpose.

(6) It will provide a data-base-of transitions for use in developing
the multi-state algorithms. By storing the signature transitions
observed in the multi-house tests, a broad data-base would be
available for "replaying" when testing the multi-state
algorithms. The algorithms could be effectively tested instan-
taneously on several months of data from the ten houses at mno
additional data collection. cost.

Thus we see a definite need for the multi—house test. We at MIT
are not comfortable with the administrative problems associsted with
such a project however, We would prefer to concentrate our resources
on the development of algorithms and analysis of test results rather
than the travel, installation difficulties and interface with home
ownere that the tests will necessitate. We therefore propose that the
responsibility for the multi-house test be shared with one or more
interested utilities, MIT will provide the hardware and software

along with instructions for installation and operation. The utility

participants would select the sites and take care of the installation



and data-collection tasks. The utilities would compare the results of
the test with appliance load-data collected by other means, while MIT
would analyze the operation of the algorithms to see how they could be
improved. MIT would also use the results in specifying the appliance-
class data base, and in evaluating the multi-atate algorithms. The
test results would, of course, alsc be available for any other
purposes that the participating utilities wished,

We propose the following approximate time. table for the

experiment:

9/85-3/86 MIT develops software and hardware for
installation. EPRI locates utility participants.
Utility participants select sites to monitor,

3/86-7/86- Utility installs and operates load moniters. MIT
consults while concentrating on multi-state and
identification algeorithms.

5/66-8/86 MIT esnalyzes results and incorporates improvements
into algorithms. Utility provides comparison
statistics.

B/B6-9/86 MIT prepares project report.

6.3 Multi-state Appliance Algorithms

The third major task remaining is to develop algorithms for the
analysis of multi-state appliances. The degree of analysis which must
be performed by these algorithms is as yet undetermined, pending the
results of the multi-house test, It may be necessary to put a great
deal of effort into slgorithms which learn the detailed structure of
multi-state appliances by techniques such as those outlined in Section
4, or it may be sufficient that the algorithm simply ignore multi-
state appliances, as long as it is not confused by them.

We plan to continue developing the algorithms under the

expectation that they will be needed. Even though the two-state



gorithas are sufficient for certain residential targets, the effort
11 not be wasted because the algorithﬁs will likely be required for
-her targets. Future commercial and industrial applications of the
snintrusive method will also require the multi-state capability. In
jdition, a focus on the multi-state case will certainly provide
asights useful to ensure that the two-state algorithm, where it is
afficient, will be only minimali} confused by the presence of multi-

tate appliances.
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Appendix A, On Using Estimates of Variance to Truncate Digtributions

The fact that the signature space contains a aumber of
distributions which each need to be estimated leads to & problem when
estimating the individual distributions. The estimates of the
jndividual distributions are necessarily based upon finite regions of
the sipnature space which do not overlap the distributions of appliances
which are nearby in the signature space. If the distributions are
modeled as normal, or as members of any wide class of distributions
which have non-zero tails which extend to infinity, then the fact that
the tails are "truncated" and do not enter into the estimate will have
an effect on the estimate. It is possible for this to seriously effect
the estimate of the means and the covariance matricies. The magnitude
of the effect depends upon the nature of the distributien, the extent of
the tails which are excluded, and the number of dimensions in the
signature space.

A concrete example using a normal distribution in one dimension
should clarify the potential enormity of this problem. Suppose
fieasurements of a signature component (e.g. start-up power) of an
appliance are in fact normally distributed with a mean g and a standard
deviation ¢ as in Figure A-1, The learning and recognition algorithms
must work together to arrive at an estimate, m, cf the mean, end, s, of
o forthis distribution. These estimates are used to evaluate new
signature measurements in the process of determining if they are
instances of this same appliance or a different appliance. If the same,
the new transitions are used in updating the estimates m and s. The
most. obvious way of determining. if a new measurement should be
associated with this appliance is to pick a comstant, Kk, and see if the
new sample falls within k standard deviations of the mean. If k was 3
for example, we would expect 99.7% of the measurements actually
associated with a given appliance to be recognized as such. Points
beyond this distance in the tail of the distribution (the shaded portion
of Figure A-1) would not be associated with the given appliance.

—
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Fig. A-l. Distribution with Infinite Tails
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A problem comes about because we do not know the actual standard -
deviation, ¢; we have only its estimate, =s. The usual way of
estimating s is to use equation A,1 which requires the estimate of the
mean given in equation A.2. Here, N is the number of samples and the x
are the measured values. Given a large number of samples from ‘the
normal distribution, these estimates will converge upon the actual -
parameters, ¢ and M. Note that these equations can be recast in a
recursive formulation in which the estimates are continuously updated ag
new x values are measured, The choice of a static or recursive fory
does not affect any of the following analysis,

(a.1)

%«
e _}:%__1 (4.2)

To see the effect of truncation on these estimates, suppose that at
some point in time, & and m happened to be estimated correctly as @
ind g, As new measurements arrive, those that lie within ks of m will
'e used to update s and m. There is no systematic effect on m because
:he discarded tails lie symmetrically about the mean m, There will be a
systematic underestimation of s however because the truncation of the
:ails eliminates those points which have the largest value of {x-m)® in
:quation A.l. When s 1s reduced, the cut-off distance, ks,- 1s
sroportionally reduced and the portion of measurements in the tails’ of
the distribution increases accordingly. This results in a further
inderestimation of s and a continuous increase in the portion of the
listribution which is ignored as beyond mtks.

The key question is whether this underestimation process continues
mtil s is zero and the entire distribution is igrored, or whether &
rontinuously shrinks but approaches a non-zero limit. If a limit 2is
ipproached, the important question is how close it is to sigma and what
:ffect this will have on the overall algorithm. It turns out that the
mswer to these questions depends on the nature of the actual
listribution, the number of dimensions in the signature space and on the
ralue selected for k,  We consider the estimation of the mean in section
1.1, and then the estimation of the standard deviation in section A.2.

1.1 Estimation of the Mean of a Truncated Distribution

Although the mean and the standard deviation are estimated
:ogether, we can separate out the effects of truscation on the two
:stimates in most cases if we separately consider cases in which ks 18
rery large from cases in which ks becomes very small, Generally
speaking, truncation has little effect on the estimate of the mean if ks
-5 large. The tails are then small and are not weighted heavily in the
istimation of m. In the case of a symmetric distribution function they
)alance and have no effect on m. Even if the distribution is not
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symmetric, if the tails are both non-zero they will partially balance,
reducing their effect on m,

If the estimation of sigma is such that ks becomes relatively small
however, then m can be systematically effected, In this case, m will
move away from 4 towards a local maximum. In the case of a normal
distribution or any other unimodal distribution in which the mean occurs
at the meximum, this does not create an error, because the mean and the
maximum coincide. In the general case however this leads to a biased
estimate of m.

To see how m is misestimated, consider the skewed one-dimensional
distribution of Figure A-2 in which the mean and the maximum do not
coincide, If ks was relatively small, as shown, and m happened to be
set to its correct value, M, subsequent estimates of m would move to
the right, closer to the value Xmay 8t which the distribution function f
reaches its maximum, - This ig because the center of gravity of the
shaded trapezoid, which covers the x values used in estimating m, is to
the right of 4. The proceéss stabilizes when the estimated m is the
center of the region of the distribution under consideration. Equaticn
A.3 must therefore be satisfied by the limiting value of m.

f(x)
RN

K Xmax
KS--I I-
Fig. A-2. Distribution Where Mean and Maximum Do Not Coincide.

m+ks

f x £(x) dx

m-ks
m= : (4.3}
ks

f-‘ f(x) dx

m-ks
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If ks is small enough that £(x) can be apbroximated by a linear
function ax+b within the interval bounded by mtks, then is easy to show
by direct substitution in equation A.3 and evaluation of the integrals

that a=0 when the mean stabilizes, Thus the limiting value of m for
small values of ks is a point of zero derivative, and not necessarily
the mean. In practice this will be a local maximum. In the case of a

nultimodal distribution, local minima will also satisfy A.3, but
stability considerations show that m will eventually move to a maximum.
In the case where ks is too large for the linear approximation to hold
within the bounds mtks, _yet not so large that the tails can be ignored,
m can.be expected to reach a limiting value somewhere between the mean

and a nearby local maximum,

In the case of a multidimensional estimation problem, the estimate
of the mean can be expected to behave analogously. If a large.
hypervolume is averaged, the true mean will be approximated. If a small
enough volume is considered, the estimate of the mean will climb up the
gradient of the probability density function and stabilize around a°
local meximum, An intermediate sized volume should result in .an
intermediate effect. ;

A.2 Estimation of ¢ in one Dimension

The argument of section A.0 shows that & is always an under-
estimation of & if the tails of the distribution are non-zero. In this
gecrion we show how the parameter k can be chosen so that the estimate
of & does not collapse to zero. We examine first the case of the omne-
dimensional normal distribution and then generalize to other
distributions. Consider the zero-mesn unit-variance normal distribution
¥(0,1), cut off at values *c as shown in Figure . A-3, Define the
standard deviation of the cut-off distribution to be B5(c). This -
function is given by equation A.4 in which the "downstairs" integral
normalizes the distribution to unit area and the '"upstairas" integral
determines the second moment. ‘ :

Fig. A-3. Truncated Normal Distribution.
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S(c) = [ mrmmmmmmmmmeeme (4.4)

Although the function $ can not be expressed in closed form, it can
e evaluated numerically, and is plotted in Figure A-4. Certain
limiting properties of 5 are readily determined. We know S{(c)
approaches zero as c¢ approaches zero because the width of the
distribution approaches zere, As c increases, 5(c) approaches 1 because
the distribution approaches the non-truncated N(0,1). Most importantly
for what follows, we can also evaluate the limit of the derivative of
S(c) as ¢ approaches =zero. In this limit, the truncated normal
distribution approaches a uniform distribution of 1 within the bounds
#c. The standard deviation of a uniform distribution is easily
evaluated (after normalization to unit area) as:

= (4.5)

e

Fig. A-4. Standard Deviation of Truncated Normal Distribution.
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By differentiating equation A.5 with respect to ¢, we see that the
slope of Figure A-4 at zero is 14/3,

The key equation governing the estimate, s, is A.6. This stateg
that the shrinkage of s, and associated growth of the tails, continues
until the standard deviation of the remaining central region agrees with
the cut—-off point, ks. The estimation process therefore converges to a
cut-off point which satisfies equation A.6. i

¢ =k 5(c) (4.6)

Equation A.6 can be restated as A.7 which allows it to be solved
graphically (using Figure A-4), to determine the stable value of c and.
S(c)  essociated with any k. - The graphical solution provides-
considerable insight into the nature of the problem.

X
5(x) = —- (A.7)
k

The right-hand side of A.7 is a line with slope 1/k which can be
superposed on Figure A-4 as in Figure A-5. The point of intersection of
the two curves gives the value of c and S{c) which will ultimately be

reached by the estimation procedure for any value of the parameter k. |
As the figure indicates, for relatively large values of k, (i.e. k>»3) ¢

is approximately k and S(c) is only slightly less than 1. ~ In other

words, the tails start approximately k standard deviations away from the

mean as desired, and the standard deviation is estimated as being close

to its-correct value, 1. For values of k less than \/g-however. the -
intersection is at the origin. 1In this case, the estimate s continues
to shrink until it reaches a value of zero and the entire distribution.
is thrown away in the tails. Intermediate values of k, such as k=2,
will lead to uncertain results. Although there is a well defined peoint
where the curves intersect, the fact that the curves are almost parallel
suggests " that there will be a stability problem in their simultaneous
solution. In practice s is given by equation A.1, not A.4, and can be .-
represented not by a smooth curve as in Figure A-5, but as a band which ~
takes into account 1likely variations from the expected value. The
convergence criterion will be very sensitive to these variations if k
takes a value just above the limiting value of k=‘/§i

K=l K=s/3 K=2 Ke3 K=4

3

Fig, A-5. Solving for Critical Cutoff Parameter.
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Most of this anelysis can be shown te apply to non-normal
distributions as well. Given any distribution which has a maximum at
its meen, the limiting process described above is valid. As ks
approaches zero, the portion of the distribution used in estimating s
can be approximated as a uniform distribution and the slope of S{c} at
zero 1is 1/vf§: This results again in\/§'being the critical point in
selecting a value of k. The sensitivity of the procedure for values
siightly larger than this eritical value will vary depending upon the
shape of the distributiom.

In view of the remarks in section A.l, q@;appears to be a critical
value of k for any one-dimensional distribution. If k is small enough
that s is significantly underestimated, the estimate of the mean will

move towards a local maximum. The portion of the distribution
surrounding this value can then be approximated as a uniform or
trapezoizal distribution and the above analysis again holds. We

conclude therefore that in the one-dimensional case, given any possible
distribution of signatire transitions to estimate, k must be set
significantly greater than./3.

A.3 Estimation of ¢ in n Dimensions

In this section we show that as the number of dimensions increases
so does the minimal value of k which must be used in order to prevent
collapse of the estimates. The n-dimensional case can be approached
analogously to the one-dimensional analysis above. Given an n-
dimensional normal distribution, a function Sn{r) can be specified which
gives the standard deviaticn along one dimension of the portion of the
distribution which lles within a radius r of the mean. This is used
because the portion of the distribution beyond some value of r will be
discarded as too far from the mean and not be used in wupdeting the
estimates. The reciprocal of derivative of this function at zero again
gives the critical value of k for the same reascns that it did in the
.one—dimensional case.

To estimate the derivative of Sp(r) at zero we use the fact that in
the limit as r approaches zero, the n-dimensional normal distribution
within the n—dimensional hypershpere of radius r approaches a uniform
distribution. The function Sp(r), for small values of r, can then be
determined from the second moment of the uniform hypersphere. To
evaluate this, we first define a series of functions, V,, which give the
hyper—volume of a n-dimensional hypersphere of radius r.

Vi(r) = 2r
Volr) = oz’
Va(r) = 4/3 w3

These functions can be evaluated recursively using equation A.B.

, r
Vp(r) = dlpvn_l(‘/r‘-x’) dx (A.8)
“r
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The second moment of the hypersphere can be evaluated using equation
4.9,

r
Tp(r) =‘[- x? Vo1 (/ri=x") dx (A.9)
o o

The standard deviation of the distribution (for small values of r) is
then given by the square root of the ratio Tg{r)/V,(r).

Tn(r)
Spl{r) = —-
Vair}

Dimensional analysis shows that this will be directly proporticnal
to r (as was the one-diménsional case in equation A.5) and its
derivative - is therefore given by equation 4.10. We use kp to denote
these critical values of the parameter k for n-dimensional estimation..

d 1 [Talry
ky = lim  — sp(r) = = \f——un (4.10)
r—Q dr r Vp(r)

Evaluation of equation A.10 for small values of n leads to the following
table of values. The integrals A.8 and A.9 quickly become tedious as n
incresses.

Table A-1. Critical values of k in n dimensions

5

£ N
o

Inspection of Table A-1 suggests that general term is given by A.11.
This is in fact the case, as is shown in the following section. It
should be remembered when selecting a value of k that these are critical
values, at or below which the estimation is bound to collapse, In
practice we expect that k should be significantly higher than k, if the
estimation procedure is to be robustly stable.

ky = /O + 2 (A.11)

The comments at the end of section A.2 concerning nonnormal
distributions  alse apply here. These values of kp, although derived
from a normal distribution will apply to a wide variety of distributions
because as kr shrinks, the estimate of the mean will simultaneously
gravitate to a local maximum, and the distribution will, in the limit,
approach uniformity.
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When determining distribution inclusion via (x-m)t $-1(x-m)<k?,
this requires that k">n+2. The consequence of this is that there is a
cost to increasing the number of dimensions used in & feature space,
Increasing the number of dimensions does not necessarily increase the
resolving power of the space,

A.4 Proof that k;=/n+2

This section consists of a proof of equation A,11 which can be
skipped by the casual reader. The technique of section A.3 does not
provide & result for the general case, only cases for particular
dimensiona. To derive the general result we proceed indirectly,

In view of the discussion above we need tc show that

: r
CHE R — (4.12)

Jon+ 2

From this it follow that k;, the reciprocal of the derivative of s(r) at
rm0, is /n+2. Instead of evaluating Vn and Tp in cartesian coordinates
as in section A.3, we proceed in spherical coordinates, The "surface
area" of a n-dimensional hypersphere of radius r will vary as the n—
minus-first power of r and can be given by

Ap(r) = ap ro-1

where the a, are constants yet to be determined. For example ay=2% and
83=47. The volume of the hypersphere can be determined by integrating
as follows:

a,

R n
Vo(R) :}r ap rm-1dr = —— RN
0 n

Analogously, the second moment, Uy, of the n-l-dimensional surface of a
n-dimensicnal hypersphere of radius r will vary with r to the n-plus-
first power and can. be integrated to determine the second-moment
function, Tp. '

Up(R) = by R04]

bn
TaR) = | by e0+l dr =« —— pO#2
0 n+ 2

As in section A.3, the standard deviation can be expressed z= the square
root of the ratio T,(r)/Vh(r). We do this with the above spherical
formulations of YV, and Tp rather than the Cartesian formulations of
section A.3., The constants ap and b, remain unevaluated.



sn(r) = R (4.13)

In order to evgluate these constants, consider the n-dimensional
normal function e * , and integrate it across all n-space to determine
its "mass" and second moment. We do this first for its "mass" ip
equation A.14 and then for the second moment in A.15. The left-hand
integrals are performed in spherical coordinates using spherical shellg
as volume units and the right-hand integrals are equivalent but ip
Cartesian coordinates,

00

fan -1 e-r'yr =f7°° ff‘x;""z’"-“";dxl dxz...dx; (A.14)

¢] —G0~-ah -C0

oo
fbn -1 g-r gy =f?: ﬁe‘x}""‘z *rr7¥ndxy dxg...dxp,  (A.15)
0 -0 =00

The right-hand integrals can be factored into the product of n separate
integrals (because the terms of the integrands are non-negative), The
left-hand integrals can be seen to be gamma functions with a change of
variable ter’ and dt=2r dr. The gamma function is defined by A.16. The
substitution z=n/2 is used to derive A.17 from A.14, while the
substitution z=14n/2 is uded to derive 4,18 from A.15.

[r o]
Iz} = [ et t2-1 g¢ (A.16)
J
1 n ® . n
—— ap [ (—) = ( f eX"4x) (4.17)
2 .2 -0
1 n o0 < @ n-1
— by (1 4 w2} = ( f 3 ex dx) ( f e=¥ dx) (A.18)
2 2 _gof ;_c-of

'he definite integral on the right-hand side of equation A.17 is well
nown to evaluate to VGF} The remaining definite integral of 4,18
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evaluates to VGF?Z. {These can be evaluated if desired by substituting
these values for aj and by into the spherical formulations of Vy and To
above, and equating them to the easily evaluated integrals A.8 and 4.0
respectively.) For our purposes here, we do not reed to evaluate a, and
by separately, but only the ratio by/ay.  The "factorial" property of
the gamme function stated as A4.19 allows the ratio to be simplified to
equation A,20.

I(z+l) = 2I7(2) (A.19)
bn
-2 = (4.20)
an

Substitution of A.20 into A.13 gives A.12. QED

A.5 Implications for Nonimtrusive Load Monitor

In the design of the Nonintrusive Appliance Load Monitor,
cognizance must be taken of two results from the abovs analysis. The
first is that the cutoff parameter, k, must be relatively large in order
to ensure there will be no "collapse" of the estimates. One can not
attempt to estimate the properties of a truncated cluster of transitions
unless all the transitions within several standard deviations of the
mean are considered. We have chosen k to be 4 in the prototype load
menitor, and this value appears to work satisfactorily. (The most
significant problems discussed in Section 3.2 appear to be in the time-
domain- aspects of the monitor, matching ON/OFF pairs, not in the
signature-space domain,) The drawback to such & large k is that it
requires a relatively large area about each mean velue in the signature
space to be devoted to each appliance, Accordingly, fewer appliances
can be discriminated in the gignature space, B

The second consequence of the above analysis concerns the number of
dimensions of the signature gspace. The minimum usable value of k was
seen to vary with the dimensionality of the space. As the number of
dimensions is increased, k must slso be increased. This was a factor in
selecting between the four-dimensional and two-and-one-half dimensional
appliance representations discussed in Section 3.1.1. Counter-intuitive
as it may appear, i1t 4is possible that incregasing the number of
signature components can, in certain circemstances, reduce the
discriminating power of the signature space. This happens when pairs of
clusters are similar in terms of the existing dimensions and identical
in terms of the added dimensions. This is the most common occurrence
when we consider the choice between the two formats for the load
moniter. If two 120 V appliances on the same leg are similar in terms
of their real and reactive power consumption, measurements of the of
other . leg add no discriminating information, because the power
consumption there should be unaffected by a 120 V appliance. But the
very fact that four dimensions instead of two are examnined requires a
larger value'of k to be used, and hence a loss of resolution between the
two appliances if they should happen to be right at the border of
discriminability. This was a factor in the selection of the two-and-
one-half dimensional format for the prototype. However, based on the
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regsults of Section 3.2, especially the common occurrences of unbalanced
240 V appliances which can not be represented in the reduced space, we
will be wusing - the full four-dimensional representation in the next
version of the Load Monitor.



dppendix B.  Normalization with Non-Integer Exponents

The normalization process described in Section 2.2 attempts to
vitiate the effect of line voltage variation by determining what the
power consumption of the house would be if the utility were to provide
a constant nominal voltage of 120 V. [Estimates stating what would be
the case in a counterfactual situation always require some assumptions
concerning the structure of the subject matter, The assumption of
Section 2.2 is that appliances are linear circuit elements, so that
their power consumption varies as the square of the voltage. The fact
is that this is not the case for most appliances. A more general
model is to assume that a power law relationship of the following form
holds for each appliance:

exponent
Power = k Voltage

The constant k, and the exponent will vary from appliance to appliance
and will take on separate values for the real and reactive power.

Thiz was only indirectly considered in Reference [1), in the
context of selecting between power, current and admittance as the most
appropriate signature components. In this framework, those signature
options translate into the question of selecting 0, 1, or 2 as the
exponent in the normalization equation:

120 exponent
Normalized Power = Measured Power {( —————— )
Voltage

This normalization equation follows directly from the above power
relationship as the appropriate way to normalize any measured power to
the power level which would have been measured if the voltage were at
120 V. With the exponent set to its current value of 2, the
assumption is being made that the admittance of all appliances is
independent of voltage. If the exponent is set to 1, ' the effect of
the formula 1is the same as assuming thet current is independent of
voltage. If the exponent were set to zero, the voltage dependence
would drop out from the above expression, the result of assuming that
the power is independent of voltage and does not need normalizatien.

Reference [1] claims that admittance is the optimal signature,
which is equivalent to claiming that 2 is the optimal exponent for
normalization, However, the oversight in Reference [1] is that power,
current and admittance are not the only choices to use as signatures,
All Reference [1] actually shows is that 2 is the optimal value out of
the three integer values considered: 0, 1, and 2. In fact, the
exponent can be set to any value, which need not be an integer. When
we consider all possible real values between the integers also, the
issue becomes less clear cut. An additional possibility not
considered in Referemce [1] is that the real and reactive parts of the
load can be normalized independently, with differing exponents. This
adds a new dimension to the normalization question, .

To address these questions we consider three arguments. The
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rst argument is theoretical. Briefly, it is that the linear model
‘edicts that 2 is the optimal exponent for both the real and reactive
mponents of the load. We believe that the linear model is a good
rst-order approximation to most of the power consuming circuit
ements found in appliances, and therefore we conclude that the
timal exponents should not vary far from 2. This argument does not
111 us much however because it is not clear how far from 2 we would
Pect an exponent to be for the degree of nonlinearity that might be
und  in typical appliances, especially motors. Therefore we must
‘amine measurements of appliance characteristics. We have performed
'pliance measurements in two ways: in isslation, and as part of an
itire household load. These measurements lead to similar
mnclusions,

First we consider appliances in isolation. .We can control the ac
dtage in a laboratory enviromment, and have measured the power
msumption versus voltage characteristics of a limited number of
pliances. By measuring the real and reactive pover consumption at
5 end 125V, using equipment described in Reference [1], we can
termine the optimum exponent in this voltage range. The exponent
ich makes the power law best fit the neasurements will be the
timal exponent with which to normalize power if the load consisted
ly of appliances of this nature. After measuring the power at 115
d 125 V, we solve for the exponent using:

Power at 125 V

log
Power at 115 ¥
Exponent =

125
log ———-
115

is relationship is derived straightforwardly by eliminating k from

e power law above, after applying it at 115 and 125 V. The optimal
ponents for normalizing the real and reactive power, as calculated
this way are listed in Table B-1, for four appliances.

; Real Reactive
Coffee Pot 2,0 ~
Light Bulb 1.5 -
Table Fan 1,2 2.4

Refrigerator 0.7 2.9

Table B-1. Normalizing Exponents for Individual Appliances

is interesting that only the electric coffee pot shows the
eoretical value of 2, The water in the coffee pot stabilizes the
mperature of the heating element, which keeps its resistance
nstant. It is therefore well approximated by a linear circuit
ement. The light bulb, in contrast, shows a distinct non-linearity.
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Its power consumption increases slower than quadratically because the
filament resistance increases at the higher temperatures that result
from higher voltages. The motors of Table B-1 show ar even greater
departure from linearity. In both cases, the real power increases
much slower than quadraticaily, close to linearly-in fact, and the
reactive power increases faster than quadratically,

It is not clear, based on these limited measurements, how typical
this data is. If these values are representative of a wide range of
appliances, then it seems that normalization could be improved, and
hence clustering would be tightened, with non-integer exponents, An
exponent of approximately 1.5 for the real component and 2,5 for the
reactive component might improve the performance of the load monitor.

The choice of exporent could be affected somewhat by the target
appliances, If water heaters are targeted, they are expected to
behave identically to the coffee pot of Table B-1. Accordingly, an
exponent of 2.would be used for tightest clustering. If appliances
with induction. motors are the main targets, and the above data turns
out to representative, then values closer to 1,5 and 2.5 may be
preferable.

The third way of addressing the normalization question is to
measure the size of tramsition clusters using different -normalization
exponents. Many factors enter into the size of a cluster. By
isolating a fixed set of transitions for which the line voltage of
each is known, we can isolate the effect of the normalization
procedure, We quantify cluster size by the standard deviation of the
trangitions in the real and reactive directions separately, Figure B-
1 shows this observed relationship for a week of transitions of the
refrigerator and oil burner of the house described in Section 3.2.1,
The four curves separate out the standard deviatien of the real and
reactive power scatter of the two clusters. Table B-2 summarizes the
results by indicating the exponent at which the cluster size is
minimized for the two appliances.

Real Reactive
Refrigerator 1.0 3.2
0il Burner 1.7 2.7

Table B-2. Normalization Exponents to Minimize Cluster Size

This data supports the above conclusion thdt an exponent less
than 2 for the real power, and greater than 2 for the reactive power
will improve load monitor performance. It remains unclear however how
far from 2 the values should be to optimize performance over the
widest possible range of target appliances. When interpreting this
data, it must be remembered that the particular range of voltages
present during this week have a primary influence on the data. Long-
term measurements, or measurements of a different week. may show
different minima,
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A fourth approach to determining these exponents is simply te
ask. It has only recently occurred to us that these exponents are
probably known for many large scale electric systems, They must be
used for estimating the power reduction benefit that would resuit from
planned brownouts. Studies of tap-changing transformers would also
involve them, They might also be measured directly during brownouts,
We will explore these areas in the near future.

The choice of normalization methed is not believed to be crucial
to the load momitor in most situations. The impact of the exponents
should only be seen in the size of transition-clusters. This should
only have an effect on the load monitor in situations where two
similar appliances need to be discriminated. If a household has two
refrigerators with slightly differing electrical characteristics, for
example, the choice of exponent might make the difference between
being able to separate two tight nearby clusters, or finding them
irresolvably fused into an ambiguous cluster. It is impossible at
this time to estimate how common this type of situation will be in
typical applications. . The multi-house test described in Section 6.2
will attempt to settle this issue.

Examination of optimum exponents for individual appliances, such
as those listed in Table B-1 above suggests a related topic. The
question is whether or not the load monitor might determine the
optimal real and reactive exponents for each cluster individually, and
then use these as parameters for identification purposes. By storing
a number of transitions along with the voltage at which each
transition oceurred, the power versus voltage relstionship of each
appliance can be readily determined. A cluster which is minimized
with an exponent very close to 2 is likely toc be a watér heater or
coffee pot. Other expoment values would indicate induction motors or
other load types perhaps. Although we have not ruled this possibility
out as yet, it is unclear if this parameter really adds any
information to that which is available from other, independently
motivated, parameters. Water heaters should be readily identified by
their size and lack of reactive power, while induction motors seem to
be identifiable by their power factors. It is possible however that
there are some appliance targets for which identification would be
improved by this parameter. If so, it will surely be included. The
resolution of this matter awaits further work on identification, as
discussed in Section 6.1.
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.ppendix C. User Control Commands

This appendix describes the user control features of the current
ersion of the Load Monitor which were passed over at the end of
ection 3.1.1. The program which controls the prototype load monitor
.an input data from four sources, and is capable of producing a wide
ariety of outputs which indicate its status, actions and conclusions.

small command language is implemented which can be used to specify
thich of these options are desired at any given time. The program
‘equests commands upon start-up and after each main cycle (just after
he working -buffer has been cleaned and before it is re-filled), -Some
f the commands produce immediate output regarding the state of the
rogram at that instant. Others set internal flags which control the
mount of annotation that the program provides as it makes its
ecigions during the process of the main loop.

If the program were collecting data from the AC Monitor while
i@iting . for the user to input commands, it would be possible for the
nput buffer to overflow, so the AC Monitor is paused while the user
nteracts with the program. In this case it does not normally stop
fter cleaning the buffer to request input. Key O can be used to
‘orce the program to request commands at its next convenience.

Commands can be given as listed below, The CONT key is used to
erminate a command, Upper and lower case can be mixed freely. Word
rder is completely free. For those commands which allow a list of
lusters to be specified, the individual clusters can be identified
dither by number or by name. (The SET NAME command is used to name a
umbered cluster.) Thus a cluster list can be something like "1 5
efrigerator 9." If no clusters are specified in such a command, all
:lusters are affected, In print and plot commands, the order of the
mtries in the cluster list is used as the order of output.

;ommands

[ELP This causes . a list of the legal commands to be

’ printed on the CRT. Adding "TO PAPER" generates a
hard copy.

1 MONITOR MODE This causes the program to process measurements in-

real-time from the AC Monitor. It also disables
the usual input breaks until KEY Q is activated.
Note that this is the default mode, The command
may be useful, however, in order to re-enter this
mode after another of the following modes has been
in effect. {(The four modes are mutually
exclusive.) .

ILE REPLAY MODE This causes the program to input transitions from
filename the specified stored-data file.

[RANSITION MODE This allows the user to input transitions from the’
keyboard whenever the buffer is to be filled.

MEASUREMENT MODE This allows the user to input measurements from
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SAVE number
TRANSITIONS
TO filename

PRINT STATUS

TO PAPER

TO SCREEN

PRINT VALUES

PRINT TYPESCRIPT

CANCEL TYPESCRIPT
PRINT DIFFICULTIES

PRINT CLUSTERS
<Cluster List)>

PRINT SUBCLUSTERS
<Cluster List)

PRINT DECISIONS
<Cluster List}

CANCEL DECISTIONS
<Cluster List)»

PRINT THOUGHTS

the keyboard (testing the edge-detector and trans—
converter). .

This creates and opens a file for storing
transitions, It is closed after the apecified
number of transitions are saved. Note that the
HOLD command should be used to close this file if
the program is stoppeé before the file is filled.

Prints a brief status message which includes the
active mode, the number of clusters, active file
status, etec.

This can be added to any print or plot command (or
the HELP command) causing output to the internal
printer in the case of print commands or to the
pen plotter in the case of plot commands. The
word "TO" need not appear,

This can be added to any print or plet command to
cause CRT output. Note that this is the default
condition and so lias no effect except when used to
change a previously-set hard-copy optiom.

Prints & 1list of all the parameter values which
may be changed from time to time (by editing the
program) to modify the program's operation.

{Sets & flag which) causes a copy of all commands
input by the user to be printed as a record.

Undoes the effect of the above command.

By adding the TQ PAPER or TC SCREEN options, this
command determines where error messages and
"trouble reports" are printed.

This causes the learned ﬁarameter: of all clusters
in the list to be printed immediately. If the
list is empty, all clusters are printed.

This causes the learned parameters of the

specified clusters and their two sub-clusters to

be printed immediately.

This causes the classification decision of ON/OFF
cycles to be printed as they happen for all
specified clusters. (This will be either that the
cycle matched an exisiting cluster or is new.)

This removes the specified clusters (or all
clusters, if the list iz empty) from the list of
clusters about which to print decisions.

This is analogous to PRINT DECISIONS, but includes
printout of the factors leading up to the
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RINT BUFFER

RINT
LOADED_BUFFER

ANCEL

LOADED BUFFER

RINT or CANCEL
MARKED BUFFER

RINT HYPOTHETICAL
<cll el2> or

<cll>

'LOT CLUSTERS
<{Cluster List>

L.OT SUBCLUSTERS
<Cluster List>

10T POINTS
{Cluster List>

3IMULTANEQUSLY

JUMP

VIEW <n>

decisions. CANCEL THOUGHIS is likewise analogous
to CANCEL DECISIONS.

This causes the current state of the buffer to be
printed immediately. At the point of input,
between cleaning and loading, this can - only
contain unmatched transitions.

This sets a flag which causes the buffer to be

printed out {from then on) just after it is
filled,

This undces the effect of PRINT LOADED BUFFER.

These are analogous to the above commands, but
cause the buffer to be printed out at a point just
before cleaning.

This causes the hypothetical fusion of twe
clusters or sub-clusters to be generated and
printed out, without actually changing the
internal cluster table. (It generates entry zero,
which is not otherwise used.) If only one cluster
is given, the hypothetical fusion of its two sub~
clusters is given. If no arguments are given, The
split test is performed on the subclusters of each
cluster, and the join test is performed between
all pairs of clusters.

This causes the decision-set ellipses for the
specified clusters to be plotted immediately. If
the S-Matrix is-not sufficiently specified, the
decision radius is used to draw a circle.

This is analogous to PLOT CLUSTERS but includes

‘plots of the two sub-clusters of each cluster.

This causes a grid to be plotted immediately " and
the transitions associated with the given clusters
to be plotted later as they are observed. the
CANCEL POINTS command cancels this point-plotting
mode.

This word can be added to any plot command . to
cause the plot to be generated over the same set
of axes and with the same scale as the previous
plot. (The plot must be to the same medium.,)

This causes whatever plot is currently on the CRT
to be "dumped" to the internal printer.

This causes the CRT to display the most recent

plot generated (instead of the text output), If
an argument {n)} is given, the plot is shown for
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SET RANGE
Xmin xmax
yuin ymax

SET LIMITS
xmin xmax
ynin ymax

SET COLOR
cluster pen

.SET CHARACTER
cluster
character

SET NAME
cluster name

SET READ COUNT n

SET CLUSTER
Cluster Leg
Count P 'Q
Sigma-xx
S5igma-yy
Sigma-xy

TRANSITION
Leg P Q

MEASUREMENT

Powerl Reactivel
Power2 Reactive2

SPLIT cluster

JOIN clusterl
cluster2

that many seconds.

This specifies the bounds of all subsequent plots,
Setting either or both of the min-max pairs to 0/0
causes plot-by-plot auto-scaling to resume on that
axis.  Auto-scaling is the default method for
determining plet bounds,

Sets the plot ares limits, in millimeters, for all

subsequent paper plots,

This causes the specified pen to be used when

plotting points or ellipses of the sgpecified
cluster on any future paper plots. The cluster
can be specified by name or number, The pen
number can range from 1 to 8, Initially, aill

clusters are set to color 2.

This sﬁecifies the character to use in subsequent
point-plots of the given cluster. Initially, all
clusters are set to ""¥",

This allows a cluster to be identified (or
renamed) for future reference and output.

This allows a specification of the maximum number
of transitions to read into the buffer at one time
when in file-replay mode, If unspecified, the
default condition is that as much data as fits is
read in.

Allows one to modify or create a cluster entry.
Add 100 to a cluster index to affect the first
subcluster, .and 200 for the second. Note that
gaps can not be made in the cluster table; only
the next highest number can be used when creating
a cluster,

If in transition mode, this command inserts the
given transition into the working buffer (if there
is room). Time entries are automatically
generated (1 hour intervals).

If in measurement mode, this command simulates a
measurement four-vector (allowing testing of the
edge-detection and dimension reduction algorithms)

the specified cluster to be split into two
sub-clusters

Causes
new appliances corresponding to the
of the given cluster.

Causes the two given clusters to be joined into a
new cluster representing their fusion.



SAVE CLUSTERS TO Writes a data file containing the current cluster
filename table.

SET CLUSTERS Reads in a data file containing a cluster table

filename generated by the above command. The new table
replaces whatever clusters were  previously
defined.

JUIET Causes the program not to beep when difficulties
occur.

-ANCEL QUIET Allows the program to beep when it prints "trouble
messages",

[OLD This causes a clean pause .to occur, (The AC

Monitor is given s Q-command,) The program can be
continued with the CONT key. (Note that if data
is being SAVEd, the last buffer—full may not be
written to disk, The command ASSIGN * TOo 2
{EXECUTE> should be performed if the partial data
file is to be kept.)

On This allows the program to stop requesting input
and proceed with its analysis of the transitions.
If n is given, it will skip n-1 input requests,
automatically loading and processing the buffer
until the nth cycle is complete.

YNTAX

Note that the following words may optionally appear in any
ommand s )
TO AND OF ABOUT 'THE

Note also that word-order is free, that upper and lower case
laracters are equivalent, and that command words and cluster names
1y be abbreviated to two or more characters, Thus the following two
mmands are equivalent:

Print Clusters 1 2 and 3 to Paper
PAPRCLUIL 2 3

lecial Function Keys

Y 0 -~ Causes an input. break after the next buffer cleaning,
¥ 1 - Prints status to screen

¥ 6 -~ Copies CRT plot to Printer; equivalent to DUMP command.
Y 7 — Toggles between the CRT plot and the CRT printout.

IFT KEY 0 —— Causes a clean Pause; equivalent to the HOLD command,



Appendix D, Split/Join Test

As described in Section 3.1.4, the split/join test is used
to determine if two given clusters are likely to belong to g
single subsuming cluster. The test considers two hypotheses:
that the clusters are unrelated, and that the clusters have
arisen by chance from a single distribution. It then determines
a relative likeliheood ratio for these hypotheses, Thig ratio is
then compared to two thresholds which determine if the clusters
should be joined or split apart. As discussed in Section 3.1.4,
the same test is used for splitting and joining with a deadband
between the thresholds that provides a hysteresis effect.

The input to the test is a set of parameters which describe
the two clusters. For each cluster it is necessary to provide;

(a) The mean of the observations, ie. the center of the
ellipse. This is actually a pair of quantities: a real
end a redctive power value in the form of a vector, M,
It is computed by averaging the observed transitions.

(b) The number of observations that have been averaged
together to form the cluster, N, It is computed by
counting the number of transitions that fall within the
cluster,

{c) The scatter matrix which defines the shape of the
ellipse, S. This is & symmetric two by two matrix, so
it actually contains only three degrees of freedom, It
is computed by taking the average value of (t-M) times
its transpose, where t takes on the value of each
observed transition in turn.

The aversging required to determine the mean, M, and the
scatter matrix, §, is performed in a recursive manner which does
not require the storage of all Previous transitions. There is
also a finite memory filter in both averaging processes which
creates a moving average effect. This should allow the load
monitor to follow gradual changes in an appliance's electrical
characteristica. The time constant of this filter is get at 25
transitions,

The arguments M, N, and S are subscripted 1 and 2 for the
two clusters. We first compute the correspending properties of
the distribution which would most likely generate the pair of
clusters. This combined distribution is given the subscript 3,
Its parameters are computed as follows:

N3 = N; + N
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Nj M1 + Ng Mg
M3 e oo

N3

Np 81 + N2 52  Nj Ng t
83 = + - (M1-Mg } (M1 -Mp)
N3 N3

The likelihoed ratio, L, indicating the relative likelihood
f the one cluster hypothesis over the two cluster hypothesis is
hen computed as:

N N3
L =--1n (det S1) + — 1n (det S3) + In (det S3)
N3 N3

The thresholds for action are -2.5 and -3.,5. The two
lusters are joined if L is greater than -2.5. 4 single cluster
s split if L for its two subclusters is less than -3.5. These
wo values were detérmined empirically, by observing the results
f applying the test to clusters which were known to belong
ogether or be separate.



Appendix E. Load Researcﬁ Results: Appliance Cycles,
Energy Consumption, and Timing

This appendix contains a series of figures which indicate
the energy and timing characteristice that the Prototype
Nonintrusive Load Monitor has learned for the major appliances of
the three test houses described in Section 3.2, As such, it
shows the type of results that the load nonitor is capable of.
Comments on many of the appliances are. given in the last
paragraphs of -Sections 3.2.1, 3.2.2, and 3.2.3. For each
appliance there are four separate plots:

(1} ON/OFF Cycles. The first plot indicates the exact time of
each ON and OFF occurrence which the load monitor has
understocd to be caused by the appliance, The horizontal
lines indicate the intervals in which the nonitor determined
the appliance to be operating. An initial tick ahove a
horizontal 1line indicates the time the cycle began. The
tick below the line at the end of each cycle indicates the
time when the appliance turned off. When an isolated tick
is shown, it means the monitor detected that the appliance
turned on or off, but did not find the matching transition
for the cycle. The missing transitions generally could not
be identified by the current version of the load monitor
because they occurred simultaneously with some other
appliance transition.

Note that the detailed ON/OFF information of this first
figure will not be saved or output by the commercial load
monitor for reasons discussed in Section 1. It is examined
here for evaluation purposes. The averaged information
which is presented in the remaining three plots will be
output at monthly intervals. '

(2) On Time Versus Time-Of-Day. The second plot for each
appliance indicates what fraction of the time it is
operating during each clock hour. For example, & value of
25% between 1:00 and 2:00 means that there is a 25% chance
the appliance will be on if ome looks at i- at some random
ingtant in this hour. By multiplying these time fractions
by the operating power level of the appliance, the energy
versus time-of-day characteristics can be calculated. We
prefer to show time here because it is directly comparable
from appliance to appliance, (For multi-state appliances,
energy would have to be output directly, because there is no
unique operating power level.) The final version of the
load monitor will generate two separate profiles for each
appliance: one for weekdays and one for weekends, Note that
due to various weaknesses of the algorithms that are pointed
out in Section 3, the usage profile figures are too low.
The current version of the load monitor is only reporting on
75 to 90% of the actual energy usage,

(3) On Time Distribution. - The third Plot for each appliance
indicates how long the appliance is left en, when it is
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4)

‘used. This is shown in the form of a distribution. For

example, a value of 25% between 1 and 2 hours means that
there is a 257 chance that the appliance will stay on for at
least an hour but turn off in less than 2 hours after it is
turned on. The bars shown always add to 100%. This data is
generated by use of twelve "bins" which are used to count
how many cycles are observed with durations that fall into
each of twelve size ranges.: The size ranges were selected
somewhat arbitrarily. They are organized quasi-
logarithmically but with round numbers: O-10 seconds, 10-30
seconds, ... , 2-3 hours, 3 hours or more.

Off Time Distribution. The fourth plot is analogous to the
above but indicates the distribution of the length of time
for which the appliance is left off before. being turned on
again.

We expect that the information contained in the  last two
figures will be very valuable when identifying appliances,
as different appliance classes often display different
ranges of characteristic duty cycles, even if their power
consumption is similar,

A list of figﬁres is included with the table of contents.
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